• 제목/요약/키워드: particle energy

검색결과 2,314건 처리시간 0.022초

ENERGY ON A PARTICLE IN DYNAMICAL AND ELECTRODYNAMICAL FORCE FIELDS IN LIE GROUPS

  • Korpinar, Talat;Demirkol, Ridvan Cem
    • 호남수학학술지
    • /
    • 제40권2호
    • /
    • pp.265-280
    • /
    • 2018
  • In this study, we firstly define equations of motion based on the traditional model Newtonian mechanics in terms of the Frenet frame adapted to the trajectory of the moving particle in Lie groups. Then, we compute energy on the moving particle in resultant force field by using geometrical description of the curvature and torsion of the trajectory belonging to the particle. We also investigate the relation between energy on the moving particle in different force fields and energy on the particle in Frenet vector fields.

Study on the neutron imaging detector with high spatial resolution at China spallation neutron source

  • Jiang, Xingfen;Xiu, Qinglei;Zhou, Jianrong;Yang, Jianqing;Tan, Jinhao;Yang, Wenqin;Zhang, Lianjun;Xia, Yuanguang;Zhou, Xiaojuan;Zhou, Jianjin;Zhu, Lin;Teng, Haiyun;Yang, Gui-an;Song, Yushou;Sun, Zhijia;Chen, Yuanbo
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1942-1946
    • /
    • 2021
  • Gadolinium oxysulfide (GOS) is regarded as a novel scintillator for the realization of ultra-high spatial resolution in neutron imaging. Monte Carlo simulations of GOS scintillator show that the capability of its spatial resolution is towards the micron level. Through the time-of-flight method, the light output of a GOS scintillator was measured to be 217 photons per captured neutron, ~100 times lower than that of a ZnS/LiF:Ag scintillator. A detector prototype has been developed to evaluate the imaging solution with the GOS scintillator by neutron beam tests. The measured spatial resolution is ~36 ㎛ (28 line pairs/mm) at the modulation transfer function (MTF) of 10%, mainly limited by the low experimental collimation ratio of the beamline. The weak light output of the GOS scintillator requires an enormous increase in the neutron flux to reduce the exposure time for practical applications.

열 중량 분석기에서 zinc 입자 크기와 반응 온도에 따른 물 분해 특성 연구 (Particle Size and Reaction Temperature Effects on the Hydrolysis Reaction of Zinc in TGA (Thermo Gravimetric Analyzer))

  • 안승혁;강경수;김창희;배기광;김영호;박주식
    • 한국수소및신에너지학회논문집
    • /
    • 제19권4호
    • /
    • pp.305-312
    • /
    • 2008
  • ZnO/Zn redox cycle is the one of the promising thermochemical cycles for hydrogen production via water splitting with high temperature heat source like a concentrated solar energy. This paper reports the particle size effect of Zinc on water splitting behavior. Water splitting reaction experiments were carried out at isothermal conditions of 350 and 400$^{\circ}C$ in TGA (Thermo Gravimetric Analyzer) using four commercial Zinc powders (nano, <10 ${\mu}m$, <150 ${\mu}m$ and $150{\sim}600\;{\mu}m$ particle sizes). Before the experiments, average particle size of Zinc powders was analyzed by PSA (Particle Size Analysis). After the experiments, XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscope) analyses were conducted on the samples. The experimental results showed that particle size had a effect on the conversion of Zinc to ZnO. Zinc conversion was increased, as the particle size decreased. Especially, the nano size particles were aggregated and the particle's morphology changed on the surface during hydrolysis reaction.

Development and validation of FRAT code for coated particle fuel failure analysis

  • Jian Li;Ding She;Lei Shi;Jun Sun
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4049-4061
    • /
    • 2022
  • TRISO-coated particle fuel is widely used in high temperature gas cooled reactors and other advanced reactors. The performance of coated fuel particle is one of the fundamental bases of reactor safety. The failure probability of coated fuel particle should be evaluated and determined through suitable fuel performance models and methods during normal and accident condition. In order to better facilitate the design of coated particle fuel, a new TRISO fuel performance code named FRAT (Fission product Release Analysis Tool) was developed. FRAT is designed to calculate internal gas pressure, mechanical stress and failure probability of a coated fuel particle. In this paper, FRAT was introduced and benchmarked against IAEA CRP-6 benchmark cases for coated particle failure analysis. FRAT's results agree well with benchmark values, showing the correctness and satisfactory applicability. This work helps to provide a foundation for the credible application of FRAT.

A Study on the Effect of Dust Precharging on Filtration Performance

  • Park, Y.O;Park, S.J.;Lee, J.H.;Kim, S.D.;Park, H.S.;Park, H.K.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제17권E2호
    • /
    • pp.53-59
    • /
    • 2001
  • A hybrid dust-collector combining electrostatic charging with fabric filtration method was developed, and its performance characteristics were evaluated in this study. Charged particles build porous dendritic structure on the surfaces of filter by electrostatic attraction, increasing the collection efficiency of dust particles and reducing the pressure drop through the deposited dust layer and filter media. The cleaning performance of the dust layer is improved because the dendritic structured dust layer can be removed more easily by pulse jet cleaning flow. The results of the experiment showed a reduction of fine particle emission of 37% and the energy saving of 13% by precharging dust particles before filtration.

  • PDF

Extended Neutral Particle Analyzer System for the KSTAR

  • Kim, Sun-Ho;Gu, Dong-Jin;Park, Min;Ahn, Chan-Yong;Wang, Son-Jong;Kim, Sung-Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.272-272
    • /
    • 2012
  • Additional neutral particle analyzer has been installed to investigate the variation of fast ion tails with regard to the line of sight during 2012 KSTAR campaign. The system has the same photo-diode particle detector as previous system [1]. Both newly installed system and previous system modifield for 2012 campaign have two channels. One has a particle stopper transparent to hard X-ray, the other has no one. It will be used to separate the hard X-ray component from total hard X-ray and fast neutral counts. It is expected to measure fast ion tails more clearly through this extended system. A detailed system and calibration result will be presented in the conference.

  • PDF

Bimodal 방법을 이용한 하전입자 응집 모델링 (Development of Simple Bimodal Model for Charged Particle Coagulation)

  • 김상복;송동근;홍원석;신완호
    • 한국입자에어로졸학회지
    • /
    • 제10권1호
    • /
    • pp.27-31
    • /
    • 2014
  • A simple bimodal model has been developed to analyze charged particle coagulation by modifying previously suggested bimdal model for evolution of particle generation and growth. In the present model, two monodisperse modes are used and 40 charge nodes are assigned to each mode to account both change of the particle size and charge distribution. In addition, we also implemented the effect of electrostatic dispersion loss in the present model. Based on the developed model, we analyzed coagulation of asymmetric bipolar charged particles by computing evolutions of particle number concentration, geometric mean diameter of particles, charge asymmetric ratio and geometric standard deviation of particle size distribution for various initial charge asymmetric ratios. The number concentration of asymmetric bipolar charged particles decreases faster than that of neutral particles but that does not give faster growth of particles since the electrostatic dispersion loss overwhelms particle growth by coagulation.

입자경과 분쇄소비동력의 고찰에 의한 교반볼밀 분쇄특성의 정량적 연구 (A Quantitative Study of Grinding Characteristics on Particle Size and Grinding Consumption Energy by Stirred Ball Mill)

  • 최희규;왕림
    • 한국재료학회지
    • /
    • 제17권10호
    • /
    • pp.532-537
    • /
    • 2007
  • A series of wet grinding experiments have been carried out using a stirred ball mill to systematically investigate consideration of grinding characteristics. The particle size distribution and median diameter of the grinding consumption power for a given grinding time were considered. Also, the effect of grinding aids on particle size and grinding consumption energy defined as the summation of grinding power was investigated. The grinding aids had influence on the smaller products size and decrease grinding consumption energy because the function of grinding aids were to be attribute to the prevention of agglomeration and ball and grinding chamber wall coating of sample powder. The grinding process seemed to be controlled by the force of agglomeration of the ground products. It was demonstrated that the particle size and grinding consumption energy could be more decreased by the addition of grinding aids.

Research of liquid-solid two phase flow in centrifugal pump with crystallization phenomenon

  • Liu, Dong;Wang, Ya-Yun;Wang, Ying-Ze;Wang, Chun-Lin;Yang, Min-Guan
    • International Journal of Fluid Machinery and Systems
    • /
    • 제7권2호
    • /
    • pp.54-59
    • /
    • 2014
  • Particle Image Velocimetry combined with developed image processing method is adopted to study the liquid-solid two phase flow in the centrifugal pump impeller with crystallization phenomenon. The tracer particle is used to follow the liquid phase, which has the diameter between 8 to $12{\mu}m$. The crystal particle precipitates from the sodium sulfate solution does change the wavelength of the laser, and which has great laser scattering characteristics. The diameter of the crystal particle is larger than $20{\mu}m$. Through calculating the diameter of the particles in the image, the tracer particle and the crystal particle can be distinguished. By analyzing the experimental result, the following conclusion has been obtained. During the delay period, there is not any crystal particle and the pump performance has not been changed. As the crystallization process begins, the crystal nuclei appears from the supersaturation solution and grows larger with temperature decreasing, which has the tendency of moving towards the pressure side. The characteristics of liquid-solid two phase flow with crystallization phenomenon in the pump are obtained according to analysis of experimental results, and some guiding advices are presented to mitigate the crystallization phenomenon in pump impeller.

IRRADIATION DEVICE FOR IRRADIATION TESTING OF COATED PARTICLE FUEL AT HANARO

  • Kim, Bong Goo;Park, Sung Jae;Hong, Sung Taek;Lee, Byung Chul;Jeong, Kyung-Chai;Kim, Yeon-Ku;Kim, Woong Ki;Lee, Young Woo;Cho, Moon Sung;Kim, Yong Wan
    • Nuclear Engineering and Technology
    • /
    • 제45권7호
    • /
    • pp.941-950
    • /
    • 2013
  • The Korean Nuclear-Hydrogen Technology Development (NHTD) Plan will be performing irradiation testing of coated particle fuel at HANARO to support the development of VHTR in Korea. This testing will be carried out to demonstrate and qualify TRISO-coated particle fuel for use in VHTR. The testing will be irradiated in an inert gas atmosphere without on-line temperature monitoring and control combined with on-line fission product monitoring of the sweep gas. The irradiation device contains two test rods, one has nine fuel compacts and the other five compacts and eight graphite specimens. Each compact contains about 260 TRISO-coated particles. The irradiation device is being loaded and irradiated into the OR5 hole of the in HANARO core from August 2013. The device will be operated for about 150 effective full-power days at a peak temperature of about $1030^{\circ}C$ in BOC (Beginning of Cycle) during irradiation testing. After a peak burn-up of about 4 atomic percentage and a peak fast neutron fluence of about $1.7{\times}10^{21}\;n/cm^2$, PIE (Post-Irradiation Examination) of the irradiated coated particle fuel will be performed at IMEF (Irradiated Material Examination Facility). This paper reviews the design of test rod and irradiation device for coated particle fuel, and discusses the technical results for irradiation testing at HANARO.