• Title/Summary/Keyword: particle dynamics

Search Result 423, Processing Time 0.022 seconds

3D Graphics Library for Generating Real-time Special Effects

  • Kim Eung-Kon;Yoo Bong-Kil;Song Seung-Heon
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.3
    • /
    • pp.172-176
    • /
    • 2004
  • In special effects industry there is a high demand to convincingly mimic the appearance and behavior of natural phenomena such as smoke, waterfall, rain, and fire. Particle systems are methods adequate for modeling fuzzy objects of natural phenomena. This paper presents particle system graphics library for generating special effects in video games and virtual reality applications. The library is a set of functions that allow c++ programs to simulate the dynamics of particles for special effects in interactive and non-interactive graphics applications, not for scientific simulation.

Combustion Fluid Field Visualization Using PIV and Related Problems (연소 유동장의 PIV 가시화 측정과 제반 문제들)

  • Kim, Young-Han;Yoon, Young-Bin;Jeung, In-Seuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.504-511
    • /
    • 2000
  • PIV(Particle Image Velocimetry) is a recently developed technique for visualizing the fluid velocity fields. Because it has several advantages over the LDV(Laser Doppler Velocimetry), it became one of the most popular diagnostic tools in spite of its short history. However, its application to combustion is restricted by some problems such as flame illumination, scattered light refraction, particle density variation due to heat release, the combined effect of abrupt change in particle density and fluid velocity on flame contour, and thermophoresis which is particle lagging due to temperature gradient. These problems are expected to be originated from the non-continuous characteristics of flames and the limitations of particle dynamics. In the present study, these problems were considered for the visualization of the instantaneous coaxial hydrogen diffusion flame. And the instantaneous flame contour was detected using particle density difference. The visualized diffusion flame velocity field shows its turbulent and meandering nature. It was also observed that the flame is located inside the outer shear layer and flame geometry is largely influenced by the vorticity.

Particle-size-dependent aging time scale of atmospheric black carbon (입자 크기의 함수로 나타낸 대기 중 블랙카본의 변성시간척도)

  • Park, Sung Hoon
    • Particle and aerosol research
    • /
    • v.5 no.2
    • /
    • pp.45-52
    • /
    • 2009
  • Black carbon, which is a by-product of combustion of fossil fuel and biomass burning, is the component that imposes the largest uncertainty on quantifying aerosol climate effect. The direct, indirect and semi-direct climate effects of black carbon depend on its state of the mixing with other water-soluble aerosol components. The process that transforms hydrophobic externally mixed black carbon particles into hygroscopic internally mixed ones is called "aging". In most climate models, simple parameterizations for the aging time scale are used instead of solving detailed dynamics equations on the aging process due to the computation cost. In this study, a new parameterization for the black carbon aging time scale due to condensation and coagulation is presented as a function of the concentration of hygroscopic atmospheric components and the black carbon particle size. It is shown that the black carbon aging time scale due to condensation of sulfuric acid vapors varies to a large extent depending on the sulfuric acid concentration and the black carbon particle size. This result indicates that the constant aging time scale values suggested in the literature cannot be directly applied to a global scale modeling. The aging time scale due to coagulation with internally mixed aerosol particles shows an even stronger dependency on particle size, which implies that the use of a particle-size-independent aging time scale may lead to a large error when the aging is dominated by coagulation.

  • PDF

Convolutional Neural Network with Particle Filter Approach for Visual Tracking

  • Tyan, Vladimir;Kim, Doohyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.693-709
    • /
    • 2018
  • In this paper, we propose a compact Convolutional Neural Network (CNN)-based tracker in conjunction with a particle filter architecture, in which the CNN model operates as an accurate candidates estimator, while the particle filter predicts the target motion dynamics, lowering the overall number of calculations and refines the resulting target bounding box. Experiments were conducted on the Online Object Tracking Benchmark (OTB) [34] dataset and comparison analysis in respect to other state-of-art has been performed based on accuracy and precision, indicating that the proposed algorithm outperforms all state-of-the-art trackers included in the OTB dataset, specifically, TLD [16], MIL [1], SCM [36] and ASLA [15]. Also, a comprehensive speed performance analysis showed average frames per second (FPS) among the top-10 trackers from the OTB dataset [34].

Particle System Graphics Library for Generating Special Effects

  • Kim Eung-Kon
    • International Journal of Contents
    • /
    • v.2 no.2
    • /
    • pp.1-5
    • /
    • 2006
  • The modeling and animation of natural phenomena have received much attention from the computer graphics community. Synthetic of natural phenomena are required for such diverse applications as flight simulators, special effects, video games and other virtual realty. In special effects industry there is a high demand to convincingly mimic the appearance and behavior of natural phenomena such as smoke, waterfall, rain, and fire. Particle systems are methods adequate for modeling fuzzy objects of natural phenomena. This paper presents particle system API(Application Program Interfaces) for generating special effects in virtual reality applications. The API are a set of functions that allow C++ programs to simulate the dynamics of particles for special effects in interactive and non-interactive graphics applications, not for scientific simulation.

  • PDF

Numerical simulations on flow and particle behaviors in the upper part of a syngas cooler for IGCC (IGCC 합성가스 냉각기 상부의 열유동 및 입자거동 특성에 대한 전산해석 연구)

  • Park, Sangbin;Ye, Insoo;Ryu, Changkook;Kim, Bongkeun
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.147-148
    • /
    • 2012
  • The syngas produced from coal gasification is cooled down for gas cleaning by a syngas cooler that produces steam. Due to the presence of fly slag in the syngas, erosion, slagging and corrosion especially in the upper part of the syngas cooler may cause major operational problems. This study investigates the flow, heat transfer and particle behaviors in the syngas cooler of a 300MWe IGCC plant by using computational fluid dynamics. For various operational loads and geometry, the gas and particle flows directly impinged on the wall opposite to the syngas inlet, which may lead to erosion of the membrane wall. In the evaporate channels inside the syngas cololr, the particle flows were concentrated more on the outer channel where slagging becomes more serious. The heat transfer to the wall was mainly by convection which was larger on the side wall below the inlet level.

  • PDF

NUMERICAL INVESTIGATION ON CAPTURE OF NANOPARTICLES IN ELECTROSTATIC PRECIPITATOR WITHOUT CORONA DISCHARGER (코로나 방전기가 없는 전기집진기의 나노입자 집진에 관한 수치해석)

  • Lee, J.W.;Jang, J.S.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.103-108
    • /
    • 2010
  • This article presents computational fluid dynamics (CFD) simulations of nanoparticle movements and flow characteristics in laboratory-scale electrostatic precipitator (ESP) without corona discharge, and for simulation, it uses the commercial CFD program(CFD-ACE) including electrostatic theory and Lagrangian-based equation for nanoparticle movement. For validation of CFD results, a simple cylindrical type of ESP is simulated and numerical prediction shows fairly good agreement with the analytical solution. In particular, the present study investigates the effect of particle diameter, inlet flow rate, and applied electric potential on particle collection efficiency and compares the numerical prediction with the experimental data, showing good agreement. It is found that the particle collection efficiency decreases with increasing inlet flow rate because the particle detention time becomes shorter, whereas it decreases with the increase in nanoparticle diameter and with the decrease of applied electric voltage resulting from smaller terminal electrostatic velocity.

  • PDF

Mesoscopic Solvent Dynamics in a Real Dimensional System

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1893-1897
    • /
    • 2004
  • Hydrodynamic simulations of mesoscopic solvent have been performed by multi-particle collision algorithm in a real dimensional system without and with the random shifting of the grid. A systematic conversion of the dimensionless units to a real dimensional system was confirmed by jump rates of solvent particles. Speed distributions of solvent particles obtained from the simulations agreed very well with the Maxwell-Boltzmann distributions. Solvent viscosities obtained from the simulations and from the conversion of units are exactly the same which confirmed the correct conversion of the units once again. The calculation of the friction coefficient of a massive Brownian particle in a mesoscopic solvent as a function of Brownian particle diameter was examined as an example.

Simulation of Soil Behavior due to Dam Break Using Moving Particle Simulation (댐 붕괴에 의한 토양 거동 시뮬레이션)

  • Kim, Kyung Sung;Park, Dong-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.388-396
    • /
    • 2017
  • A Lagrangian approach based computational fluid dynamics (CFD) was used to simulate large and/or sharp deformations and fragmentations of interfaces, including free surfaces, through tracing each particle with physical quantities. According to the concept of the particle-based CFD method, it is possible to apply it to both fluid particles and solid particles such as sand, gravel, and rock. However, the presence of more than two different phases in the same domain can make it complicated to calculate the interaction between different phases. In order to solve multiphase problems, particle interaction models for multiphase problems, including surface tension, buoyancy-correction, and interface boundary condition models, were newly adopted into the moving particle semi-implicit (MPS) method. The newly developed MPS method was used to simulate a typical validation problem involving dam breaking. Because the soil and other particles, excluding the water, may have different viscosities, various viscosity coefficients were applied in the simulations for validation. The newly developed and validated MPS method was used to simulate the mobile beds induced by broken dam flows. The effects of the viscosity on soil particles were also investigated.

Separation characteristics of particles in a self-rotating type centrifugal oil purifier

  • Pyo, Young-Seok;Jung, Ho-Yun;Choi, Yoon-Hwan;Doh, Deog-Hee;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.147-153
    • /
    • 2014
  • The centrifugal oil purifier is used in an engine for lubrication and to remove impurities. The momentum needed for the rotation of the cylindrical chamber is obtained by jet injections. An impure particle in the oil is separated by the centrifugal forces moving to the inner wall of the rotating cylindrical chamber body. The dust particles are eliminated when the particles are absorbed onto the surface of the inner wall of the chamber body. The flow characteristics and the physical behaviors of particles in this centrifugal oil purifier were investigated numerically and the filtration efficiencies was evaluated. For calculations, a commercial code is used and the SST (Shear Stress Transport) turbulence model has been adopted. The MFR (Multi Frames of Reference) method is introduced to consider the rotating effect of the flows. Under various variables, such as particle size, particle density and rotating speed, the filtration efficiencies are evaluated. It has been verified that the filtration efficiency is increased with the increments in the particle size, the particle density and the rotating speed of the cylindrical chamber.