• Title/Summary/Keyword: partially premixed flame

Search Result 90, Processing Time 0.024 seconds

An Experimental Study on the Characteristics of Temperature field according to the Combustor Diameters in the Dual Swirl Burner (이중 선회버너에서 연소실 직경에 따른 온도장 특성에 관한 실험적 연구)

  • Choi, Inchan;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.107-108
    • /
    • 2013
  • An experimental study in the dual swirl burner was conducted to analyze the temperature characteristics in the combustion field. The dual swirl burner consists of a main swirling pre-mixed flame with tangential swirler surrounding a pilot which can stabilize a diffusion flame or a partially premixed flame with vane swirler depending on whether fuel is supplied at the exit plane or further upstream. The purpose of this study is to analyse experimentally the characterization of flame temperature in the reacting zone, specially, according to the various combustor diameters like 80mm, 100mm, 130mm and 150mm(O.D). As a result, the temperatures of combustion field were decreased as the diameter of combustor increased. Therefore, these results can be expected that the larger diameter of combustor tend to emit less NOx emission than the small combustor.

  • PDF

Numerical Study on H2 Preferential Diffusion Effect in Downstream Interactions between Premixed H2-air and CO-air Flames (상호작용 하는 H2-공기/CO-공기 예혼합화염에 미치는 H2 선호 확산 영향에 대한 수치적 연구)

  • Chung, Yong Ho;Park, Jeong;Kwon, Oh Boong;Keel, Sang In;Yun, Jin Han
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.37-43
    • /
    • 2013
  • The effects of preferential diffusion of hydrogen in interacting counterflow $H_2$-air and CO-air premixed flames were investigated numerically. The global strain rate was varied in the range $30-5917s^{-1}$, where the upper bound of this range corresponds to the flame-stretch limit. Preferential diffusion of hydrogen was studied by comparing flame structures for a mixed average diffusivity with those where the diffusivities of H, $H_2$ and $N_2$ were assumed to be equal. Flame stability diagrams are presented, which show the mapping of the limits of the concentrations of $H_2$ and CO as a function of the strain rate. The main oxidation route for CO is $CO+O_2{\rightarrow}CO_2+O$, which is characterized by relatively slow chemical kinetics; however, a much faster route, namely $CO+OH{\rightarrow}CO_2+H$, can be significant, provided that hydrogen from the $H_2$-air flame is penetrated and then participates in the CO-oxidation. This modifies the flame characteristics in the downstream interaction between the $H_2$-air and CO-air flames, and can cause the interaction characteristics at the rich and lean extinction boundaries not to depend on the Lewis number of the deficient reactant, but rather to depend on chemical interaction between the two flames. Such anomalous behaviors include a partial opening of the upper lean extinction boundary in the interaction between a lean $H_2$-air flame and a lean CO-air flame, as well as the formation of two islands of flame sustainability in a partially premixed configuration with a rich $H_2$-air flame and a lean CO-air flame. At large strain rates, there are two islands where the flame can survive, depending on the nature of the interaction between the two flames. Furthermore, the preferential diffusion of hydrogen extends both the lean and the rich extinction boundaries.

A Study of Characteristics of NOx Emission in Lobed Burner (로브형 버너에서의 NOx 배출 특성에 관한 연구)

  • Cho, H.C.;Cho, K.W.;Lee, Y.K.
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • To evaluate the effect of lobed structure on pollutant emission, an experimental study examines NOx and CO emissions associated with four burner geometries, such as a conventional circular burner and three lobed ones. Rapid mixing allowed by the lobed burner to produce lean premixed flames, with narrower flame stability diagram than for the conventional circular one. Conventional circular burner of wide and uniform burner rim has an advantage of flame stabilization. Correlation on fuel discharge velocity for flame blowout should be included a variable related to the wall effect of the burner. NOx emission reduces by about 5% at the burner with lobed structure in fuel discharge side compared to conventional circular one. This is due to lower flame temperatures through flame elongation and increased radiative heat losses, caused by partially luminous flame in flame front. Meanwhile, at the burner with lobed structure in air discharge side and both fuel and air discharge sides, NOx emission somewhat increases with reduced radiative heat losses in spite of flame elongation. Therefore, the rapid mixing by lobed structure does not always have an advantage on NOx reduction.

  • PDF

The Study of Effects of Variable Parameters on Flame Structure and NOx Emission in Methane/Air Laminar Partially Premixed Flames (메탄/공기 층류 부분 예혼합화염에서 예혼합 정도에 따른 화염구조와 질소산화물의 배출에 미치는 영향에 관한 연구)

  • Oh, Jeong-Seog;Jeong, Yong-Ki;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.362-367
    • /
    • 2003
  • It is shown that the effect of variable parameters on flame structures and NOx emissions in the laminar partially premixed methane-air flames with a co-axial Bunsen burner. Objectives of this paper is to understand the effects of flow variables on NOx emissions and the flame structure with OH chemiluminescence, including reconstructed image by abel inversion processing at each conditions. A fuel flowrate of 200 [cc/min] was fixed and the amount of air was varied from 400 to 1200 [cc/min]. The experimental variables were equivalence ratio(${\Phi}$ fuel split percentage(${\sigma}$ and inner tube recess(x/D). Flow conditions were ranged from $1.36{\sim}4.76$(equivalence ratio), $50{\sim}100$(fuel split percentage) and $0{\sim}20$(inner tube recess). NOx analyzer and ICCD camera with a OH filter were used as a main experimental apparatus. In addition, Abel inversion, which is a kind of tomography and valuable to estimate a two-dimensional structure of co-axial flames from cubical information, was employed for combustion diagnostics. Results from this study indicate that the main effects depend on equivalence ratio and next sigma, x/D for NOx production and OH formation. Throughout Abel inversion, we could affirm the maximum position and the tendency of OH radical intensity by variants at five axial heights above the burner exit.

  • PDF

Proposal and Validation of a New Flame Stability Diagram to Gas Estimate Interchangeability (가스호환성 판정에 편리한 새로운 화염안정영역의 도시법의 제안 및 유용성 검토)

  • Lee, Chang-Eon;Kim, Jong-Min;Hwang, Cheol-Hong;Kim, Jong-Hyun
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.3
    • /
    • pp.1-8
    • /
    • 2008
  • A flame stability diagram in a partially premixed flame is typically expressed using the axis coordinates of heat input rate and equivalence ratio. These diagrams are inadequate for identifying changes in combustion conditions and flame stability when a reference fuel is substituted with other fuels under identical operating conditions. This study proposes a new type of diagram and validates it experimentally. In this new diagram, the axis coordinates are air flow rate and Wobbe fuel flow rate, defined as the fuel flow rate multiplied by the square root of the relative density. The diagram was validated in trials using various fuels, including $CH_4$, $C_{3}H_{8}$, and LFG-$C_{3}H_{8}$ mixed fuels, in a domestic gas-range and an gas interchangeability test burner. The results of these trials show that the new diagram can provide information useful for assessing gas interchangeability of combustion conditions and flame stability when one fuel is substituted with another under identical operating conditions.

  • PDF

Effects of Additive and Preheat on the Partially Premixed $CH_4-Air$ Counter Flow Flames Considering Non-gray Gas Radiation

  • Park Won-Hee;Chang Hee-Chul;Kim Tae-Kuk
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.242-250
    • /
    • 2006
  • Detailed structures of the counterflow flames formed for different inlet fluid temperatures and different amount of additives are studied numerically. The detailed chemical reactions are modeled by using the CHEMKIN-II code. The discrete ordinates method and the narrow band based WSGGM with a gray gas regrouping technique (WSGGM-RG) are applied for modeling the radiative transfer through non-homogeneous and non-isothermal combustion gas mixtures generated by the counterflow flames. The results compared with those obtained by using the SNB model show that the WSGGM-RG is very successful in modeling the counterflow flames with non-gray gas mixture. The numerical results also show that the addition of $CO_2\;or\;H_2O$ to the oxidant lowers the peak temperature and the NO concentration in flame. But preheat of fuel or oxidant raises the flame temperature and the NO production rates. $O_2$ enrichment also causes to raise the temperature distribution and the NO production in flame. And it is found that the $O_2$ enrichment and the fuel preheat were the major parameters in affecting the flame width.

Development of a Hybrid/Dual Swirl Jet Combustor for a Micro-Gas Turbine (Part I: Experimental Study on Geometric Optimization) (마이크로 가스터빈을 위한 하이브리드/이중 선회제트 연소기의 개발 (Part I: 형상 최적화를 위한 실험적 연구))

  • Park, Tae-Joon;Hwang, Cheol-Hong;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.199-200
    • /
    • 2012
  • An experimental study on geometric optimization was conducted to develop a hybrid/dual swirl jet combustor for a micro-gas turbine. A hybrid concept indicating a combination of swirling jet partially premixed and premixed flames were adopted to achieve high flame stability as well as clean combustion. Location of pilot nozzle, angle and direction of swirl vane were varied as main parameters with a constant fuel flow rate for each nozzle. The results showed that the variation in location of pilot nozzle resulted in significant change in swirl intensity due to the change in flow area near burner exit, and thus, optimized nozzle location was determined on the basis of CO and NOx emissions under conditions of co-swirl flow and swirl $angle=30^{\circ}$. The increase in swirl angle (from $30^{\circ}$ to $45^{\circ}$) enhanced the emission performances, in particular, with a significant reduction of CO emission near lean-flammability limit. It was observed that the CO emission near lean-flammability limit was further reduced through the counter-swirl flow. However, there was not significant change in the NOx emission in the operating conditions (i.e. equivalence ratio of 0.6~0.7) between the co- and the counter-swirl flow.

  • PDF

Large Eddy Simulation of a Lifted Methane/Air Flame using FGM-based Multi-Environment PDF Approach (FGM기반 Multi-Environment PDF 모델을 이용한 메탄/공기 부상화염장의 Large Eddy Simulation)

  • Kim, Namsu;Kim, Jaehyun;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.265-266
    • /
    • 2015
  • The multi-environment PDF model coupled with flamelet generated manifolds(FGM) has been developed for a large eddy simulation of turbulent partially premixed lifted flame. This approach has a capability to realistically account for the transport and evolution of probability density function for mixture fraction and progress variable with the manageable computational burden. Using the tabulated chemistry, it is possible to track radical distributions which is important to predict autoignition process with the vitiated coflow environment. Numerical results indicate that the present yields the good agreement with experimental data in terms of mixture fraction, temperature, and species mass fractions.

  • PDF

Effect of Lean-rich Fuel Staging to the Multiple Jet Flames on the Blowout Velocity (과농-희박연료가 교차로 공급되는 상호작용 화염의 화염날림에 관한 연구)

  • Lee, Byeong-Jun;Park, Kyung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.7-14
    • /
    • 2008
  • It has been reported that partially premixed interacting flame could be sustained till sonic exit velocities if eight small nozzles are arranged optimally and one nozzle on the center is fed small amount of fuel. But the equivalence ratios in this experiments were 20-60. In this research, experiments were conducted to know the effects of lean-rich staging in multiple jet flames on the blowout velocity. The fuel mole tractions in the fuel-air mixture, the nozzle exit velocity and the diameter between adjacent nozzles were alternatively changed. When the lower mole fraction fuel was fed to the nozzles located near the center and small amount of fuel to the center nozzle, flame was not extinguished even at the nozzle exit velocity of 200m/s. Also the interacting flame could be sustained till that velocity when four small size nozzles for lean mixture were located within the arrangement of four nozzles for rich mixture and configured optimally.

Effects of $CO_2$ and $H_2O$ Additions on Partially Premixed Counterflow Flame by Considering Nongray Gas Radiation (비회색 가스 복사를 고려한 층류대향류 부분예혼합 화염에서의 $CO_2$$H_2O$ 첨가에 따른 영향 연구)

  • Jo, Bum-Jin;Kim, Tae-Kuk
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.3
    • /
    • pp.10-16
    • /
    • 2005
  • Detailed flame structures of the counterflow flames of $CH_4/Air$ formed with $CO_2$ and $H_2O$ addition are studied numerically. The detailed chemical reactions are modeled by using the OPPDIF and CHEMKIN-II code. Only the $CO_2$ and $H_2O$ are assumed to participate in radiative heat transfer while all other gases are assumed to be transparent. The discrete ordinates method(DOM) and the narrow band based WSGGM with a gray gas regrouping technique(WSGGM-RG) are applied for modeling the radiative transfer through non-homogeneous and non-isothermal combustion gas mixtures generated by the counter flow flames. The results compared with the SNB model show that the WSGGM-RG is successful in modeling the counterflow flames with non-gray gas mixture. The numerical results show that the addition of $CO_2$ and $H_2O$ to the oxidant nozzle lowers the peak temperature and the NO concentration in flame.

  • PDF