• 제목/요약/키워드: partial least squares regression analysis

검색결과 105건 처리시간 0.035초

중국인 유학생의 대학생활 적응과 대학생활 만족도에 미치는 영향에 관한 연구 (A Study of Chinese Student Adaptation to Korean Universities and Level of Satisfaction with University Life)

  • 김종원;김은정
    • 한국산업정보학회논문지
    • /
    • 제24권4호
    • /
    • pp.99-112
    • /
    • 2019
  • 시대의 변화에 따라 교육 시장의 모습도 변화하고 있다. 국내 대학들은 학령인구의 감소에 따른 위기극복의 방안으로 외국인 유학생을 유치하기 위한 노력을 기울이고 있다. 우리나라 유학생 중 가장 큰 비중을 차지하고 있는 중국인 유학생은 우리나라 대학에서 주요한 학생 구성원이 되고 있다. 중국인 유학생은 본국을 떠나 새로운 환경에 적응하면서 다양한 어려움에 직면하게 된다. 본 연구는 중국인 유학생들의 학업적 요인과 정서적 요인이 대학생활 적응도와 대학생활 만족도에 미치는 영향을 검증하는데 그 목적이 있다. 이를 위해 부산소재 4년제 D대학에 재학중인 중국인 유학생 128명을 대상으로 자료를 수집하였으며, 자료분석은 PLS(Partical least squares)을 사용하여 경로분석을 실시하였다. 연구결과는 다음과 같다. 첫째, 학업적 요인인 교수 요인과 교직원의 관심정도는 대학생활 적응도에 유의한 영향을 미쳤으나, 한국어 구사 능력은 대학생활 적응도에 유의한 영향을 나타내지 않았다. 둘째, 정서적 요인인 향수병은 대학생활 적응도에 유의한 영향을 나타냈으나, 문화적응 스트레스는 대학생활 적응도에 유의한 영향을 미치지 않는 것으로 나타났다. 셋째, 대학생활 적응도는 대학생활 만족도에 유의한 영향이 입증되었다. 이러한 결과를 토대로 본 연구의 의의와 한계점 및 향후 연구 방안에 대해 논의하였다.

Evaluation of Drainage by Near Infrared Spectroscopy

  • Takamura, Hitoshi;Miyamoto, Hiroko;Mori, Yoshikuni;Matoba, Teruyoshi
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1271-1271
    • /
    • 2001
  • Water pollutants in drainage mainly consist of organic compounds. Hence, total organic carbon (TOC), chemical oxygen demand (COD), and biochemical oxygen demand (BOD) were generally used as the indices of pollution. However, these values are determined by special analyzer (TOC), titration method (COD), or microbe culture (BOD). Therefore, the development of simple and easy methods for the determination of water pollution is required. The authors reported the evaluation of water pollution by near infrared (NIR) spectroscopy in a model system with food components (Takamura et al. (200) Near Infrared Spectroscopy: Proceedings of 9th International Conference, pp. 503-507). In this study, the relationship between NIR spectra and drainage was investigated in order to develop a method for evaluation of drainage by NIR. Drainage was obtained in Nara Purification Center. The ranges of TOC, COD, and BOD were 0-130, 0-100 and 0-200, respectively. NIR transmittance spectra were recorded on NIR Systems Model 6250 Research Composition Analyzer in the wavelength range of 680-1235 and 1100-2500 nm with a quartz cell (light path: 0.5, 1, 2, 4 and 10mm) at 10-40. Statistical analysis was performed using NSAS program. A partial least squares (PLS) regression analysis was used for calibration. As the result, a good correlation between the raw NIR spectra and OC was obtained in the calibration. The best light path was 10 and 0.5mm in the wavelength range of 680-1235 and 110-2500nm, respectively. In the calibration, correlation coefficients(R) were 096-0.97 in the both range. In the prediction, however, a good correlation (R=0.89-0.96) was obtained only in the range of 6801235 nm, Similar results were obtained in the cases of COD and BOD. These results suggest the possibility that NIR spectroscopy can be used to evaluate drainage.

  • PDF

Prediction of the Chemical Composition and Fermentation Parameters of Winter Rye Silages by Near Infrared Spectroscopy

  • Park, Hyung Soo;Lee, Sang Hoon;Choi, Ki Choon;Lim, Young Cheol;Kim, Ji Hea;Lee, Ki Won;Choi, Gi Jun
    • 한국초지조사료학회지
    • /
    • 제34권3호
    • /
    • pp.209-213
    • /
    • 2014
  • This study was carried out to explore the accuracy of near infrared spectroscopy (NIRS) for the prediction of chemical and fermentation parameters of whole crop winter rye silages. A representative population of 216 fresh winter rye silages was used as database for studying the possibilities of NIRS to predict chemical composition and fermentation parameters. Samples of silage were scanned at 1 nm intervals over the wavelength range 680~2,500 nm and the optical data recorded as log 1/Reflectance (log 1/R) and scanned in fresh condition. NIRS calibrations were developed by means of partial least-squares (PLS) regression. NIRS analysis of fresh winter rye silages provided accurate predictions of moisture, acid detergent fiber (ADF), neutral detergent fiber (NDF), crude protein (CP) and pH as well as lactic acid content with correlation coefficients of cross-validation ($R^2cv$) of 0.96, 0.86, 0.79, 0.85, 0.82 and 0.78 respectively and standard error of cross-validation (SECV) of 1.89, 2.02, 2.79, 1.14, 1.47 and 0.46 % DM respectively. Results of this experiment showed the possibility of NIRS method to predict the chemical parameters of winter rye silages as routine analysis method in feeding value evaluation and for farmer advice.

Prediction of the Chemical Composition of Fresh Whole Crop Barley Silages by Near Infrared Spectroscopy

  • Park, Hyung Soo;Lee, Sang Hoon;Lim, Young Cheol;Seo, Sung;Choi, Ki Choon;Kim, Ji Hea;Kim, Jong Geun;Choi, Gi Jun
    • 한국초지조사료학회지
    • /
    • 제33권3호
    • /
    • pp.171-176
    • /
    • 2013
  • Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid and accurate method of evaluating some chemical compositions in forages and feedstuff. This study was carried out to explore the accuracy of near infrared spectroscopy (NIRS) for the prediction of chemical parameters of fresh whole crop barley silages. A representative population of 284 fresh whole crop barley silages was used as a database for studying the possibilities of NIRS to predict chemical composition. Samples of silage were scanned at 1 nm intervals over the wavelength range 680~2,500 nm and the optical data were recorded as log 1/Reflectance (log 1/R) and were scanned in fresh condition. NIRS calibrations were developed by means of partial least-squares (PLS) regression. NIRS analysis of fresh whole crop barley silages provided accurate predictions of moisture, acid detergent fiber (ADF), neutral detergent fiber (NDF), crude protein (CP) and pH, as well as lactic acid content with correlation coefficients of cross-validation ($R^2cv$) of 0.96, 0.81, 0.79, 0.84, 0.72 and 0.78, respectively, and standard error of cross-validation (SECV) of 1.26, 2.83, 2.18, 1.19, 0.13 and 0.32% DM, respectively. Results of this experiment showed the possibility of the NIRS method to predict the chemical parameters of fresh whole crop barley silages as a routine analysis method in feeding value evaluation and for farmer advice.

콩고기의 관능적 특성 및 소비자 기호도 분석 (Study on Sensory Characteristics and Consumer Acceptance of Commercial Soy-meat Products)

  • 김미라;양정은;정라나
    • 한국식생활문화학회지
    • /
    • 제32권2호
    • /
    • pp.150-161
    • /
    • 2017
  • This study was conducted to identify sensory characteristics of soy-meat samples by trained panels and to observe the relationship between these sensory characteristics and consumer acceptability of the samples. Descriptive analysis was performed on eight samples; four types of patty style soy-meat samples (Soy-meat Patty; SP) made with a Ddukgalbi recipe (YSP, VSP, LSP, and SSP) and four types of Bulgogi style soy-meat samples (Soy-meat Bulgogi; SB) made with a Bulgogi recipe (YSB, VSB, LSB, and SSB). Seven panelists were trained, and they evaluated the appearance, odor/aroma, flavor/taste, texture/mouth feel, and after taste attributes of these samples. Forty attributes were generated by panelists, and 37 attributes were significantly different across products (p<0.05). The SB group was characterized by beef, leek, and garlic flavor as well a sweetness, denseness, slipperiness, chewiness, and pepper after taste. The SP group was characterized by roughness, particle size, rancid oil flavor, raw bean flavor, astringent, sourness, and adhesiveness. Consumer test (n=125) showed that the VSB sample had the highest scores for acceptability of appearance, flavor, texture, and overall liking. The PLSR results show that the attributes that were more positively associated with acceptance of soy-meat samples were beef taste, wetness, and chewiness, whereas the raw bean smell and rancid oil flavor attributes were negative.

Evaluation of benzene residue in edible oils using Fourier transform infrared (FTIR) spectroscopy

  • Joshi, Ritu;Cho, Byoung-Kwan;Lohumi, Santosh;Joshi, Rahul;Lee, Jayoung;Lee, Hoonsoo;Mo, Changyeun
    • 농업과학연구
    • /
    • 제46권2호
    • /
    • pp.257-271
    • /
    • 2019
  • The use of food grade hexane (FGH) for edible oil extraction is responsible for the presence of benzene in the crude oil. Benzene is a Group 1 carcinogen and could pose a serious threat to the health of consumer. However, its detection still depends on classical methods using chromatography which requires a rapid non-destructive detection method. Hence, the aim of this study was to investigate the feasibility of using Fourier transform infrared (FTIR) spectroscopy combined with multivariate analysis to detect and quantify the benzene residue in edible oil (sesame and cottonseed oil). Oil samples were adulterated with varying quantities of benzene, and their FTIR spectra were acquired with an attenuated total reflectance (ATR) method. Optimal variables for a partial least-squares regression (PLSR) model were selected using the variable importance in projection (VIP) and the selectivity ratio (SR) methods. The developed PLS models with whole variables and the VIP- and SR-selected variables were validated against an independent data set which resulted in $R^2$ values of 0.95, 0.96, and 0.95 and standard error of prediction (SEP) values of 38.5, 33.7, and 41.7 mg/L, respectively. The proposed technique of FTIR combined with multivariate analysis and variable selection methods can detect benzene residuals in edible oils with the advantages of being fast and simple and thus, can replace the conventional methods used for the same purpose.

Feasibility Study for an Optical Sensing System for Hardy Kiwi (Actinidia arguta) Sugar Content Estimation

  • Lee, Sangyoon;Sarkar, Shagor;Park, Youngki;Yang, Jaekyeong;Kweon, Giyoung
    • 농업생명과학연구
    • /
    • 제53권3호
    • /
    • pp.147-157
    • /
    • 2019
  • In this study, we tried to find out the most appropriate pre-processing method and to verify the feasibility of developing a low-price sensing system for predicting the hardy kiwis sugar content based on VNIRS and subsequent spectral analysis. A total of 495 hardy kiwi samples were collected from three farms in Muju, Jeollabukdo, South Korea. The samples were scanned with a spectrophotometer in the range of 730-2300 nm with 1 nm spectral sampling interval. The measured data were arbitrarily separated into calibration and validation data for sugar content prediction. Partial least squares (PLS) regression was performed using various combinations of pre-processing methods. When the latent variable (LV) was 8 with the pre-processing combination of standard normal variate (SNV) and orthogonal signal correction (OSC), the highest R2 values of calibration and validation were 0.78 and 0.84, respectively. The possibility of predicting the sugar content of hardy kiwi was also examined at spectral sampling intervals of 6 and 10 nm in the narrower spectral range from 730 nm to 1200 nm for a low-price optical sensing system. The prediction performance had promising results with R2 values of 0.84 and 0.80 for 6 and 10 nm, respectively. Future studies will aim to develop a low-price optical sensing system with a combination of optical components such as photodiodes, light-emitting diodes (LEDs) and/or lamps, and to locate a more reliable prediction model by including meteorological data, soil data, and different varieties of hardy kiwi plants.

Attenuated total reflection Fourier transform infrared as a primary screening method for cancer in canine serum

  • Macotpet, Arayaporn;Pattarapanwichien, Ekkachai;Chio-Srichan, Sirinart;Daduang, Jureerut;Boonsiri, Patcharee
    • Journal of Veterinary Science
    • /
    • 제21권1호
    • /
    • pp.16.1-16.10
    • /
    • 2020
  • Cancer is a major cause of death in dogs worldwide, and the incidence of cancer in dogs is increasing. The attenuated total reflection Fourier transform infrared spectroscopic (ATR-FTIR) technique is a powerful tool for the diagnosis of several diseases. This method enables samples to be examined directly without pre-preparation. In this study, we evaluated the diagnostic value of ATR-FTIR for the detection of cancer in dogs. Cancer-bearing dogs (n = 30) diagnosed by pathologists and clinically healthy dogs (n = 40) were enrolled in this study. Peripheral blood was collected for clinicopathological diagnosis. ATR-FTIR spectra were acquired, and principal component analysis was performed on the full wave number spectra (4,000-650 cm-1). The leave-one-out cross validation technique and partial least squares regression analysis were used to predict normal and cancer spectra. Red blood cell counts, hemoglobin levels and white blood cell counts were significantly lower in cancer-bearing dogs than in clinically healthy dogs (p < 0.01, p < 0.01 and p = 0.03, respectively). ATR-FTIR spectra showed significant differences between the clinically healthy and cancer-bearing groups. This finding demonstrates that ATR-FTIR can be applied as a screening technique to distinguish between cancer-bearing dogs and healthy dogs.

Vitamin C Tablet Assay by Near -Infrared Reflectance spectrometry

  • Kargosha, Kazem;Ahmadi, Hamid;Nemati, Nader
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.4111-4111
    • /
    • 2001
  • When a drug is prepared in a tablet, the active component represents only a small portion of the dosage form. The other components of the formulation include materials to assist in the dissolution, antioxidants, coloring agents and bulk fillers. The tablets are tested using approved testing methods usually involving separation and subsequent quantification of the active component. Tablets may also be tested by near-Infrared Reflectance spectrometry (NIRS). In the present study, based on NIRS and multivariate calibration methods, a novel and precise method is developed for direct determination of ascorbic acid in vitamin C tablet. Two different tablet formulations were powdered in three different sizes, 63-125 ${\mu}{\textrm}{m}$, and examined. Spectral region of 4750-4950 $cm^{-1}$ / was used and optimized for quantitative operations. Partial least squares (PLS) and multiple linear regression (MLR) methods were performed for this spectral region. The results of optimized PLS and MLR methods showed that reproducibility increase with decreasing grain size and standard error of calibration (SEP) of less than 1% w/w of ascorbic acid and a correlation coefficient of 0.998 can be achieved. The PLS method showed better results than MLR. Seven overdose and underdose samples (prepared in the laboratory to match marketed products) were tested by proposed and iodometric standard methods. A correlation between NIRS predicted ascorbic acid values and iodomet.ic values was calculated ($R^2$=0.9950). Finally, the direct analysis of individual intact tablets in their unit-dose packages (Blistering in aluminum and PVC foils) obtained from market were also carried out and a correlation coefficient of 0.9989 and SEP of 0.931% w/w of ascorbic acid were achieved.

  • PDF

Non-destructive Method for Selection of Soybean Lines Contained High Protein and Oil by Near Infrared Reflectance Spectroscopy

  • Choung, Myoung-Gun;Baek, In-Youl;Kang, Sung-Taeg;Han, Won-Young;Shin, Doo-Chull;Moon, Huhn-Pal;Kang, Kwang-Hee
    • 한국작물학회지
    • /
    • 제46권5호
    • /
    • pp.401-406
    • /
    • 2001
  • The applicability of non-destructive near infrared reflectance spectroscopic (NIRS) method was tested to determine the protein and oil contents of intact soybean [Glycine max (L.) Merr.] seeds. A total of 198 soybean calibration samples and 101 validation samples were used for NIRS equation development and validation, respectively. In the developed non-destructive NIRS equation for analysis of protein and oil contents, the most accurate equation was obtained at 2, 8, 6, 1(2nd derivative, 8 nm gap, 6 points smoothing, and 1 point second smoothing) and 2, 1, 20, 10 math treatment conditions with Standard Normal Variate and Detrend (SNVD) scatter correction method and entire spectrum (400-2500 nm) by using Modified Partial Least Squares (MPLS) regression, respectively. Validation of these non-destructive NIRS equations showed very low bias (protein: 0.060%, oil: -0.017%) and standard error of prediction (SEP, protein: 0.568 %, oil : 0.451 %) as well as high coefficient of determination ($R^2$, protein: 0.927, oil: 0.906). Therefore, these non-destructive NIRS equations can be applicable and reliable for determination of protein and oil content of intact soybean seeds, and non-destructive NIRS method could be used as a mass screening technique for selection of high protein and oil soybean in breeding programs.

  • PDF