• 제목/요약/키워드: partial compressive strength

검색결과 171건 처리시간 0.024초

Combined effect of lightweight fine aggregate and micro rubber ash on the properties of cement mortar

  • Ibrahim, Omar Mohamed Omar;Tayeh, Bassam A.
    • Advances in concrete construction
    • /
    • 제10권6호
    • /
    • pp.537-546
    • /
    • 2020
  • Exterior walls in buildings are exposed to various forms of thermal loads, which depend on the positions of walls. Therefore, one of the efficient methods for improving the energy competence of buildings is improving the thermal properties of insulation plaster mortar. In this study, lightweight fine aggregate (LWFA) and micro rubber ash (MRA) from recycled tires were used as partial replacements for sand. The flow ability, unit weight, compressive strength, tensile strength, thermal conductivity (K-value), drying shrinkage and microstructure scan of lightweight rubberized mortar (LWRM) were investigated. Ten mixtures of LWRM were prepared as follows: traditional cement mortar (control mixture); three mixes with different percentages of LWFA (25%, 50% and 75%); three mixes with different percentages of MRA (2.5%, 5% and 7.5%); and three mixes consisting both types with determined ratios (25% LWFA+5% MRA, 50% LWFA+5% MRA and 75% LWFA+5% MRA). The flow ability of the mortars was 22±2 cm, and LWRM contained LWFA and MRA. The compressive and tensile strength decreased by approximately 64% and 57%, respectively, when 75% LWFA was used compared with those when the control mix was used. The compressive and tensile strength decreased when 5% MRA was used. By contrast, mixes with determined ratios of LWFA and MRA affected reduced unit weight, K-value and dry shrinkage.

저시멘트 소일콘크리트의 유동성 및 압축강도 특성 (Flow and Compressive Strength Properties of Low-Cement Soil Concrete)

  • 박종범;양근혁;황철성
    • 한국건설순환자원학회논문집
    • /
    • 제6권1호
    • /
    • pp.1-7
    • /
    • 2018
  • 본 연구에서는 산업부산물을 다량 활용한 소일콘크리트의 유동성 및 강도발현에 대한 결합재-흙의 비(B/S) 및 물-결합재비(W/B)의 영향을 평가하였다. 보통 포틀랜드 시멘트의 부분 치환재로서 바이패스 더스트 10%, 고로슬래그미분말 40%, 순환유동층 플라이애시 25%가 사용되었다. 저시멘트 결합재와 함께 사질토 또는 점성토를 사용하여 18 소일콘크리트 배합이 실험되었다. 실험결과 소일콘크리트의 유동성은 대상토(점성토 또는 사질토)의 종류에 관계없이 동일한 W/B에서 B/S가 클수록 증가하였다. 압축강도는 점성토 콘크리트보다 동일 배합조건을 갖는 사질토 콘크리트에서 컸다. 산업부산물 다량 활용 소일콘크리트의 배합은 압축강도 및 고유동성을 고려하면 대상토에 관계없이 B/S가 0.35 그리고 W/B는 175%가 추천될 수 있었다.

제지애쉬를 혼입한 모르터의 특성에 관한 실험적 연구 (An Experimental Study on the Properties of Mortar Mixing Paper Ash)

  • 이시우
    • 한국건축시공학회지
    • /
    • 제2권3호
    • /
    • pp.115-121
    • /
    • 2002
  • The purpose of this study is investigating characteristics of paper-ash mortar according to partial replacement of fine aggregate by Paper-ash. For this purpose, selected test variables were mixing ratio with two levels of mortar(1:2, 1:3), and 3 types of paper-ash(A, B, C), and paper-ash content with four levels(5%,, 10%, 15%, 20%). As a result of this study, in all mixes with partial replacement of fine aggregate by Paper-ash generally Produced Paper-ash mortar with decreased compressive strength at ail age as compared to ordinary mixes. The mixing rate 1:2 was the higher increasing rate of strength than the mixing rate 1:3. The flow value and unit weight of paper-ash mortar were decreased with increasing of the paper-ash content. And the thermal conductivity of the thermal conductivity of the paper-ash mortar was lower than normal mixing without paper-ash.

Influence of granulated blast furnace slag as fine aggregate on properties of cement mortar

  • Patra, Rakesh Kumar;Mukharjee, Bibhuti Bhusan
    • Advances in concrete construction
    • /
    • 제6권6호
    • /
    • pp.611-629
    • /
    • 2018
  • The objective of present study is to investigate the effect of granulated blast furnace slag (GBS) as partial substitution of natural sand on behaviour of cement mortar. For this, the methods of factorial design with water cement (w/c) ratio and incorporation percentages of GBS as replacement of natural fine aggregate i.e., GBS(%) as factors are followed. The levels of factor w/c ratio are fixed at 0.4, 0.45, and 0.5 and the levels of factor GBS(%) are kept fixed as 0%, 20%, 40%, 60%, 80% and 100%. The compressive strength (CS) of mortar after 3, 7, 14, 28, 56 and 90 days, and water absorption (WA) are chosen as responses of the study. Analysis of variance (ANOVA) of experimental results has been carried out and those are illustrated by ANOVA tables, main effect and interaction plots. The results of study depict that the selected factors have substantial influence on the strength and WA of mortar. However, the interaction of factors has no substantial impact on CS and WA of mixes.

불소화 메조페이스 핏치로 제조된 그라파이트 폼의 물리/화학적 특성 (Physical-Chemical Properties of Graphite Foams Produced with Fluorinated Mesophase Pitch)

  • 김지현;김도영;이형익;이영석
    • Korean Chemical Engineering Research
    • /
    • 제54권6호
    • /
    • pp.830-837
    • /
    • 2016
  • 그라파이트 폼의 압축강도를 향상시키기 위하여 메조페이스 핏치를 공기분위기에서 산화안정화 한 후 다양한 불소 부분압으로 처리하였다. 불소화 처리된 메조페이스 핏치의 불소/탄소 표면화학 조성은 불소 부분압에 따라서 약 23.75%~61.48%의 범위를 가진다. 불소화 메조페이스 핏치기반 그라파이트 폼의 압축강도는 겉보기 밀도의 증가에 비례하여 증가되었다. 불소/탄소 표면화학 조성이 35.93%의 값을 갖는 메조페이스 핏치로부터 제조된 그라파이트 폼의 압축강도는 최대 $2.93{\pm}0.06MPa$의 값을 보여 주었으며, 이 값은 미처리된 메조페이스 핏치로부터 제조된 그라파이트 폼과 비교하여 27.95% 증가되었다. 이러한 결과는 표면에너지가 큰 불소 작용기로 인한 메조페이스 핏치간의 계면결합력이 그 압축강도를 증가시켰기 때문으로 여겨진다.

Influence of granite waste aggregate on properties of binary blend self-compacting concrete

  • Jain, Abhishek;Gupta, Rajesh;Chaudhary, Sandeep
    • Advances in concrete construction
    • /
    • 제10권2호
    • /
    • pp.127-140
    • /
    • 2020
  • This study explores the feasibility of granite waste aggregate (GWA) as a partial replacement of natural fine aggregate (NFA) in binary blend self-compacting concrete (SCC) prepared with fly ash. Total of nine SCC mixtures were prepared wherein one was Ordinary Portland cement (OPC) based control SCC mixture and remaining were fly ash based binary blend SCC mixtures which included the various percentages of GWA. Fresh properties tests such as slump flow, T500, V-funnel, J-ring, L-box, U-box, segregation resistance, bleeding, fresh density, and loss of slump flow (with time) were conducted. Compressive strength and percentage of permeable voids were evaluated in the hardened state. All the SCC mixtures exhibited sufficient flowability, passing ability, and resistance to segregation. Besides, all the binary blend SCC mixtures exhibited lower fresh density and bleeding, and better residual slump (up to 50% of GWA) compared to the OPC based control SCC mixture. Binary blend SCC mixture incorporating up to 40% GWA provided higher compressive strength than binary blend control SCC mixture. The findings of this study encourage the utilization of GWA in the development of binary blend SCC mixtures with satisfactory workability characteristics as a replacement of NFA.

폐 난연성 EPS의 혼합조건에 따른 재생골재 블록의 물성에 관한 실험적 연구 (The Physical Properties of the Block Using Flame Resistant EPS Wastes)

  • 조광현;김지현;정철우;이재용;이수용
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.152-153
    • /
    • 2013
  • Based on the Fire Service Act of mandatory provision, new buildings are strictly forced to use fire protection materials. Flame resistant EPS is one of those materials. Unlike conventional EPS that can be fused to make EPS ingot and be recycled for various purposes, flame resistant EPS waste cannot be recycled due to the presence of protective coating that is applied to increase the fire protection properties of EPS. A suitable alternative that can process large amount of flame resistant EPS wastes needs to be developed, and one of the possible alternative is to use them as construction materials. In this research, experiments were designed to observe whether the flame resistant EPS wastes can be utilized as partial replacements of fine aggregates in cement mortar. The replacement ratio of waste EPS was varied, and its effect on compressive strength and absorption capacity was investigated. According to the experimental results, both compressive strength and absorption capacity met the Korean Standard specification for cement bricks and blocks, indicating that flame resistant EPS wastes can be used for construction purposes.

  • PDF

Properties and durability of concrete with olive waste ash as a partial cement replacement

  • Tayeh, Bassam A.;Hadzima-Nyarko, Marijana;Zeyad, Abdullah M.;Al-Harazin, Samer Z.
    • Advances in concrete construction
    • /
    • 제11권1호
    • /
    • pp.59-71
    • /
    • 2021
  • This research aims to study the utilization of olive waste ash (OWA) in the production of concrete as a partial substitute for cement. Effects of using OWA on the physical and mechanical properties of concrete mixtures have been investigated. This is done by carrying out tests involving the addition of various percentages of OWA to cement (0%, 5%, 10% and 15%). For each percentage, tests were performed on both fresh and hardened concrete; these included slump test, unit weight test and compressive strength test after 7, 28 and 90 days. Durability tests were investigated in solutions containing 5% NaOH and MgSO4 by weight of water. In addition, resistance to high temperatures was tested by subjecting the cubes to high temperatures of up to 170℃. The results of this research indicate that a higher percentage of OWA gives a lower compressive strength and lower workability but higher performance in terms of durability against both different weather conditions and high temperatures.

Probabilistic Strength at Serviceability Limit State for Normal and SBHS Slender Stiffened Plates Under Uniaxial Compression

  • Rahman, Mahmudur;Okui, Yoshiaki;Anwer, Muhammad Atif
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1397-1409
    • /
    • 2018
  • Stiffened plates with high slenderness parameters show large out-of-plane deflections, due to elastic buckling, which may occur before the plates reach their ultimate strength. From a serviceability point of view, restriction of out-of-plane deflections exceeding the fabrication tolerance is of primary importance. Compressive strength at the serviceability limit state (SLS) for slender stiffened plates under uniaxial stress was investigated through nonlinear elasto-plastic finite element analysis, considering both geometric and material nonlinearity. Both normal and high-performance steel were considered in the study. The SLS was defined based on a deflection limit and an elastic buckling strength. Probabilistic distributions of the SLS strengths were obtained through Monte Carlo simulations, in association with the response surface method. On the basis of the obtained statistical distributions, partial safety factors were proposed for SLS. Comparisons with the ultimate strength of different design codes e.g. Japanese Code, AASHTO, and Canadian Code indicate that AASHTO and Canadian Code provide significantly conservative design, while Japanese Code matches well with a 5% non-exceedance probability for compressive strength at SLS.

잔골재를 패각으로 치환한 모르터의 강도, 흡수율 및 계면 결합형태 (Strength, Absorption and Interfacial Properties of Mortar Using Waste Shells as Fine Aggregates)

  • 문훈;김지현;이재용;정철우
    • 한국건축시공학회지
    • /
    • 제14권6호
    • /
    • pp.523-529
    • /
    • 2014
  • 국내에서는 많은 양의 패류가 생산되고 있으나, 이로 인해 발생하는 대량의 패각을 처리하는데 많은 어려움을 겪고 있다. 따라서 본 연구에서는 이러한 패각을 대량으로 처리하기 위하여 건설재료로서의 가능성을 평가하고자 한다. 모르터의 잔골재를 패각으로 치환하여 흡수율, 압축강도를 측정하고 계면결합 형태를 관찰하였다. 대체적으로 패각의 치환율이 증가함에 따라 흡수율은 증가하였으며, 압축강도는 감소하였다. 예외적으로 꼬막 패각을 치환한 모르터는 치환율이 증가함에 따라 압축강도가 증가하였다. 패각 치환율의 증가에 따른 흡수율의 증가 및 압축강도의 감소는 패각 주위에 발생한 다공성 때문인 것으로 파악되었으며, 꼬막 패각을 치환한 모르터는 패각과 시멘트 입자간의 계면결합 형태가 양호하였기 때문에, 오히려 강도가 상승한 것으로 판단된다.