• 제목/요약/키워드: parthenogenetic oocytes

검색결과 108건 처리시간 0.018초

돼지에서 난자의 체외발육 배양액 내 첨가된 거대분자물질이 작은 난포 유래 미성숙 난자의 성장, 성숙 및 배 발육에 미치는 영향 (Various macromolecules in in vitro growth medium influence growth, maturation, and parthenogenetic development of pig oocytes derived from small antral follicles)

  • 이한나;이용진;이주형;이근식;이승태;이은송
    • 대한수의학회지
    • /
    • 제59권2호
    • /
    • pp.81-88
    • /
    • 2019
  • This study was performed to examine the effects of various macromolecules in in vitro growth (IVG) media on the growth, maturation, and parthenogenesis (PA) of pig oocytes derived from small antral follicles (SAF). Immature oocytes were cultured for two days in IVG medium supplemented with 10% (v/v) fetal bovine serum (FBS), 10% (v/v) pig follicular fluid (PFF), 0.4% (w/v) bovine serum albumin (BSA), or 0.1% (w/v) polyvinyl alcohol (PVA) and then maintained for 44 h for maturation. After IVG, the mean diameters of the SAF treated with FBS, PVA, and no IVG-MAF ($113.0-114.8{\mu}m$) were significantly larger than that of no IVG-SAF ($111.8{\mu}m$). The proportion of metaphase II oocytes was higher in PFF (73.6%) than in BSA (43.5%) and PVA (53.7%) but similar to that in the FBS treatment (61.5%). FBS and PFF increased cumulus expansion significantly compared to PVA and BSA while the intraoocyte glutathione content was not influenced by the macromolecules. Blastocyst formation of PA oocytes treated with FBS (51.8%), PFF (50.4%), and PVA (45.2%) was significantly higher than that of the BSA-treated oocytes (20.6%). These results show that the PFF and FBS treatments during IVG improved the growth, maturation, and embryonic development of SAF.

Development of a Chemically Defined In Vitro Maturation System for Porcine Oocytes: Application for Somatic Cell Nuclear Transfer

  • Koo, Ja-Min;Won, Cheol-Hee;Min, Byung-Moo;Roh, Sang-Ho
    • International Journal of Oral Biology
    • /
    • 제30권4호
    • /
    • pp.131-134
    • /
    • 2005
  • In the present study, performances of several in vitro maturation (IVM) systems for porcine follicular oocytes were evaluated, and an efficient chemically defined IVM system for porcine oocytes was proposed. The proposed one-step culture system supplemented with polyvinylalcohol (PVA) gave competitive efficiencies in terms of oocyte maturation and blastocyst development after parthenogenetic activation and in vitro culture, compared with the conventional two-step culture system by a supplementation of porcine follicular fluid (pFF). Additionally, it is identified that the proposed chemically defined one-step culture system yielded the comparable level of blastocyst production to the conventional maturation system in porcine somatic cell nuclear transfer (SCNT). Therefore, one can eliminate un-expected effects accompanied by supplementation of pFF. No medium replacement during whole maturation period is an additional benefit by applying this new system. Thus, these data support that the developed PVA supplemented chemically defined one-step IVM system for porcine follicular oocyte might be used in porcine SCNT program.

Effects of (-)-Epicatechin Gallate on porcine oocyte in vitro maturation and subsequent embryonic development after parthenogenetic activation and in vitro fertilization

  • Seo, Min-Su;So, Kyoung-Ha;Hyun, Sang-Hwan
    • 한국수정란이식학회지
    • /
    • 제31권3호
    • /
    • pp.153-159
    • /
    • 2016
  • (-)-Epicatechin gallate (ECG) is a polyphenol compound of green tea exhibiting biological activities, such as antioxidant and anticancer effects. To examine the effect of ECG on porcine oocytes during in vitro maturation (IVM), oocytes were treated with 0-, 5-, 15-, and $25{\mu}M$ ECG. After maturation, we investigated nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels and subsequent embryonic development after parthenogenetic activation (PA) and in vitro fertilization (IVF). After 42 hours of IVM, the $5{\mu}M$ group exhibited significantly increased (p< 0.05) nuclear maturation (89.8%) compared with the control group (86.1%). However, the $25{\mu}M$ group observed significantly decreased (p< 0.05) nuclear maturation (83.5%). In intracellular maturation assessment the 5-, 15-, and $25{\mu}M$ groups had significantly increased (p< 0.05) GSH levels and decreased ROS levels compared with the controls. The 5- and $15{\mu}M$ group showed significantly increased (p< 0.05) embryo formation rates and total cell number of blastocysts after PA (18% and 68.9, 15% and 85.1 vs. 12% and 59.5, respectively) compared with controls. Although the $25{\mu}M$ group observed significantly lower blastocyst formation rates after PA (27.6% vs. 23.2%) than control group, the $5{\mu}M$ group showed significantly increased blastocyst formation rates after PA (37.2% vs. 23.2%) compared to the control group. Furthermore, the $5{\mu}M$ group measured significantly increased blastocyst formation rates (20.7% vs. 8.6%) and total cell number after IVF ($88.3{\pm}1.5$ vs. $58.0{\pm}3.6$) compared to the control group. The treatment of $5{\mu}M$ ECG during IVM affectively improved the porcine embryonic developmental competence by regulating intracellular oxidative stress during IVM.

소 체세포 핵이식란의 화학적 처리에 의한 MPF 활성 및 핵의 Remodeling 조절 (Control of MPF Activity and Nuclear Remodeling of Somatic Cell Nuclear Transfer Bovine Embryos by Chemical Treatments)

  • 최용락;이유미;김호정;박주희;권대진;박춘근;양부근;정희태
    • 한국수정란이식학회지
    • /
    • 제23권1호
    • /
    • pp.31-36
    • /
    • 2008
  • We attempted to control the maturation promoting factors (MPF) activity and nuclear remodeling of somatic cell nuclear transfer (NT) bovine embryos. Bovine ear skin fibroblasts were fused to enucleated oocytes treated with either 5 mM caffeine for 2.5 h or 0.5 mM vanadate for 0.5 h and activated. The nuclear remodeling type of the reconstituted embryos was evaluated 1.5 h after activation. MPF activity was assessed in enucleated and chemical treated oocytes before the injection of a donor cell. Effect of chemicals on the embryonic development was evaluated with parthenogenetic embryos. MPF activity increased significantly by caffeine treatment, but decreased by vanadate treatment (p<0.05). Caffeine or vanadate had no deleterious effect on the parthenogenetic embryo development. In caffeine treated group, premature chromosome condensation (PCC) was occurred in 72.2% of NT embryos (p<0.05). In contrast, vanadate induced the formation of a pronucleus-like structure (PN) in a high frequency (68.9%, p<0.05) without PCC (NPCC). Blastocyst development of NT embryos increased by treating with caffeine (30.3%), whereas decreased by treating with vanadate (11.4%) compared to control (22.1%, p<0.05). The results indicate that caffeine or vanadate can control of MPF activity and remodeling type of NT embryos, resulting in the increased or decreased in vitro development.

Effect of oocyte chromatin status in porcine follicles on the embryo development in vitro

  • Lee, Joo Bin;Lee, Min Gu;Lin, Tao;Shin, Hyeon Yeong;Lee, Jae Eun;Kang, Jung Won;Jin, Dong-Il
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권7호
    • /
    • pp.956-965
    • /
    • 2019
  • Objective: The main goal of this study was to provide a morphological indicator that could be used to select high-quality oocytes of appropriate meiotic and developmental capabilities in pig. The higher quality of immature oocytes, the higher success rates of in vitro maturation (IVM) and in vitro fertilization (IVF). Thus, prior to the IVM culture, it is important to characterize oocytes morphologically and biochemically in order to assess their quality. Two of the largest indicators of oocyte quality are the presence of cumulus cells and status of chromatin. To investigate the effects of porcine oocyte chromatin configurations on the developmental capacity of blastocysts, we assessed oocyte chromatin status according to follicle size and measured the developmental potency of blastocysts. Methods: To sort by follicle size, we divided the oocytes into three groups (less than 1 mm, 1 to 3 mm, and more than 3 mm in diameter). To assess chromatin configuration, the oocytes were assessed for their stages (surrounded nucleolus [SN] germinal vesicle [GV], non-surrounded nucleolus [NSN] GV, GV breakdown, metaphase I [MI], pro-metaphase II [proMII], and metaphase II [MII]) at different maturation times (22, 44, and 66 h). To assess the development rate, oocytes of each follicle size were subjected to parthenogenetic activation for further development. Finally, GV oocytes were grouped by their chromatin configuration (SN, SN/NSN, and NSN) and their global transcriptional levels were measured. Results: SN GV oocytes were more suitable for IVF than NSN GV oocytes. Moreover, oocytes collected from the larger follicles had a greater distribution of SN GV oocytes and a higher developmental capacity during IVM, reaching MII more quickly and developing more often to blastocysts. Conclusion: Porcine oocytes with high-level meiotic and developmental capacity were identified by analyzing the relationship between follicle size and chromatin configuration. The porcine oocytes from large follicles had a significantly higher SN status in which the transcription level was low and could be better in the degree of meiotic progression and developmental capacity.

Effects of FBS(Fetal Bovine Serum) and pFF(Porcine Follicular Fluid) on In Vitro Maturation and Development of Porcine Parthenogenetic and Nuclear Transfer Embryos

  • Moon, Hyo-Jin;Shim, Joo-Hyun;Hwang, In-Sun;Park, Mi-Rung;Kim, Dong-Hoon;Ko, Yeoung-Gyu;Park, Choon-Keun;Im, Gi-Sun
    • Reproductive and Developmental Biology
    • /
    • 제33권2호
    • /
    • pp.85-91
    • /
    • 2009
  • In this study, in vitro maturation system using fetal bovine serum (FBS) or porcine follicular fluid (pFF) was investigated to produce comparable oocytes to those derived from in vivo. Control group of oocytes was cultured in TCM 199 supplemented with 0.1% polyvinyl alcohol (PVA). Other three groups of oocytes were cultured in TCM 199 supplemented with 10% FBS, 10% pFF or 5% FBS + 5% pFF, respectively. After 44 h maturation, oocytes with the first polar body were activated with two electric pulses (DC) of 1.2 kv/cm for 30 ${\mu}sec$. Also, matured oocytes of four groups were reconstructed and fused. Reconstructed embryos were cultured in PZM-3 under 5% $CO_2$ in air at $38.5^{\circ}C$ for 6 days. The oocytes matured in the medium supplemented with FBS or/and pFF showed significantly higher maturation rates (64.0 vs. 73.9 to 85.2%). In PA embryos, cleavage rates (89.7 vs. 77.1 to 86.6%) and blastocysts rates (30.0 vs. 16.2 to 26.2%) were significantly higher in pFF group (p<0.05). In NT embryos, there was no difference among treatments in cleavage rate, but the blastocyst rates (28.5 vs. 15.5 to 24.6%) were significantly higher in pFF group (p<0.05). The apoptosis rate was significantly higher (p<0.05) in the control than other groups (10.8 vs. 4.9 to 8.2% for PA, 3.1 vs. 0.5 to 1.3% for NT). In order to select the comparable oocyte to in vivo oocytes, each group of oocytes was stained with Brilliant cresyl blue (BCB) after 42h maturation. The matured oocytes were separated according to color of cytoplasm; stained group (BCB+) and unstained group (BCB-). The oocytes matured in the presence of FBS or/and pFF showed significantly higher staining rates (70.3 to 72.7 vs. 35.1%) (p<0.05). To verify the fact that the supplementation of FBS or/and pFF can increase the maturation rates, cdc2 kinase activity, the catalytic subunit of MPF, was determined. The cdc2 kinase activity of the oocytes matured in the medium supplemented with FBS or/and pFF was significantly higher than control group (6.7 to 9.3 vs. 3.8). In conclusion, the supplementation of FBS or/and pFF can support in vitro maturation rate of porcine oocytes through the increment of cdc2 kinase activity level in the cytoplasm.

Fate of Parthenogenetic Mouse Embryos Aggregated with ES Cells

  • Kim, Ji-Yeon;Lee, Hoon-Taek;Chung, Kil-Saeng
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2003년도 학술발표대회 발표논문초록집
    • /
    • pp.30-30
    • /
    • 2003
  • The present study examined the developmental ability of embryonic stem (ES) cells aggregated with mouse parthenogenetic embryos. Oocytes obtained from superovulated female mouse (BCF1) were treated with 7% ethanol and 5 $\mu\textrm{g}$/$m\ell$ cytochalasin B (CB) for producing pathenotes and in vitro fertilized with fresh sperm for producing normal embryos. The reporter vector (pNeoEGFP) were inserted into ES cells (129S4/svJae) by electroporation. At the 8-cell stage, in vitro fertilized embryos and pathenotes, which the zona pellucida was removed, were co-cultured with 5~10 ES cells for 4 hr. After in vitro fertilized embryos and parthenotes aggregated with ES cells were incubated to blastocyst stage, and these blastocysts transferred into the uterus of pseudopregnant recipients. The fertilized embryos aggregated with ES cells were successfully developed to offspring, but the parthenotes aggregated with ES cells failed to develop offsprings. However, genomic DNA of ES cells was detected in the pathenogenetic fetus by polymerase chain reactions at 15 day post gestation. In this study, results indicated that parthenotes aggregated with ES cells showed possible development to fetus. In the future, this method may help to produce transgenic chimera from parthenotes aggregated with ES cells.

  • PDF

Effect of Treatment of In Vitro Matured Pig Oocytes with Calcium Ionophore on Monospermic Penetration In Vitro

  • Song, Xue-Xiong;Zhao, Xian-Mian;Han, Yi-Bing;Niwa, Koji
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권2호
    • /
    • pp.172-178
    • /
    • 2002
  • The present study examined whether treatment of in vitro matured pig oocytes with calcium ionophore (A23187) could prevent polyspermic penetration in vitro. When oocytes cultured for maturation for 33, 36 or 44 h were subsequently treated with $50{\mu}M$ A23187 in medium with fetal calf serum (FCS) for 1, 2 and 3 h and then cultured for 12 h without spermatozoa, virtually no activation occurred. In the absence of FCS, however, 31-42, 45-49 and 56-64% of oocytes were activated, respectively. When oocytes treated with $50 {\mu}M$ A23187 in medium with FCS for 3 h were inseminated in vitro, the penetration rates (14-57%) were lower (p<0.01) with a higher (p<0.01) incidence (35-67%) of monospermy compared with untreated oocytes (69-80% penetration and 15-17% monospermy). However, sperm penetration was completely blocked in all oocytes treated with A23187 in the absence of FCS. When oocytes matured for 33 h were treated with different concentrations of A23187 for 3 h and inseminated in vitro, the penetration rate did not change but there was an increased incidence (p<0.05) of monospermy at $10-20{\mu}M$ and $2.5-5{\mu}M$ A23187 in the presence and absence of FCS, respectively, compared with at $0{\mu}M$ A23187. With these lower concentrations of A23187, treatment of oocytes for at least 60 and 30 min in the presence and absence of FCS, respectively, was required to increase the incidence of monospermy without reducing penetration rate. These results indicate that a high concentration ($50{\mu}M$) of A23187 in medium without FCS, but not in medium with FCS, stimulated in vitro matured pig oocytes to induce parthenogenetic activation and a complete block to sperm penetration in vitro. However, treatment of oocytes with lower concentrations of A23187 ( $10-20{\mu}M$ and $2.5-5{\mu}M$) both in the presence and absence of FCS maintained sperm penetration in vitro and increased the incidence of monospermy.

Isolation and Characterization of Parthenogenetic Embryonic Stem (pES) Cells Containing Genetic Background of the Kunming Mouse Strain

  • Yu, Shu-Min;Yan, Xing-Rong;Chen, Dong-Mei;Cheng, Xiang;Dou, Zhong-Ying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권1호
    • /
    • pp.37-44
    • /
    • 2011
  • Parthenogenetic embryonic stem (pES) cells could provide a valuable model for research into genomic imprinting and X-linked diseases. In this study, pES cell lines were established from oocytes of hybrid offspring of Kunming and 129/Sv mice, and pluripotency of pES cells was evaluated. The pES cells maintained in the undifferentiated state for more than 50 passages had normal karyotypes with XX sex chromosomes and exhibited high activities of alkaline phosphatase (AKP) and telomerase. Meanwhile, these cells expressed ES cell molecular markers SSEA-1, Oct-4, Nanog, and GDF3 but not SSEA-3 detected by immunohistochemistry and RT-PCR. The pES cells could be differentiated into various types of cells from three germ layers in vitro by analysis of embryoid bodies (EBs) with immunohistochemistry and RT-PCR, and in vivo by observation of pES cell-derived teratoma sections. Therefore, the established pES cell lines contained all features of mouse ES cells. This work provides a new strategy for isolating pES cells from Kunming mice, and the pES cell lines could be applied as the cell model in research into genomic imprinting and epigenetic regulation of Kunming mice.

Existence of Amino Acids in Defined Culture Medium Influences In Vitro Development of Parthenogenetic and Nuclear Transfer Porcine Embryos

  • Won, Cheol-Hee;Park, Sang-Kyu;Kim, Ki-Young;Roh, Sang-Ho
    • 한국수정란이식학회지
    • /
    • 제23권4호
    • /
    • pp.245-250
    • /
    • 2008
  • This study was designed to investigate the effect of essential amino acids (EAA) and/or non-essential amino acids (NEAA) on the development of parthenogenetic and somatic cell nuclear transfer (SCNT) porcine embryos in vitro. To evaluate the timing of amino acids supplementation, activated oocytes were cultured in NCSU23-PVA with EAA, NEAA or NEAA+EAA (AAs) during specific periods as below: EAA, NEAA or AAs were supplemented during Day 0 to 6 (whole culture period: ALL), Day 2 to Day 6 (post-maternal embryonic transition period: POST-MET), Day 5 to Day 6 (post-compaction period: POST-CMP), Day 0 to Day 2 (pre-maternal embryonic transition period: PRE-MET), or Day 0 to Day 4 (post-compaction period: PRE-CMP). Supplementation of NEAA decreased cleavage rates in PRE-MET and PRE-CMP and also decreased blastocyst rates in POST-CMP. On the other hand, EAA significantly enhanced blastocyst formation rate in POST-MET and no detrimental effect on embryonic development in other groups. Interestingly, NEAA and EAA had synergistic effect when they were supplemented to the medium during whole culture period. Supplementation of AAs also enhanced SCNT porcine embryo development whereas BSA-free medium without AAs could not supported blastocyst formation of SCNT embryos. In conclusion, existence of EAA and NEAA in defined culture medium variously influences the development of parthenogenetic and SCNT porcine embryos, and their positive effect are only occurred when both EAA and NEAA are supplemented to the medium during whole culture period. Additionally, AAs supplementation enhances the blastocyst formation of SCNT porcine embryos when they are cultured in the defined condition.