• Title/Summary/Keyword: parietal cortex

Search Result 92, Processing Time 0.027 seconds

Working Memory Mapping Analysis using fMRI (기능적 자기공명영상을 이용한 단기기억 뇌기능 매핑연구)

  • Juh Rahyeong;Choe Boyoung;Suh Taesuk
    • Progress in Medical Physics
    • /
    • v.16 no.1
    • /
    • pp.32-38
    • /
    • 2005
  • Impaired processing of facial information is one of the broad ranges of cognitive deficits seen in patients with schizophrenia. The purpose of this study was to elucidate the differences in brain activities involved in the process of facial working memory between schizophrenic patients and healthy comparison subjects. Ten patients with schizophrenia were recruited along with matched healthy volunteers as a comparison group. Functional magnetic resonance imaging (fMRI) was used to assess cortical activities during the performance of a 1-back working memory paradigm using images of neutral faces as mnemonic content. The patient group performed the tasks with reduced accuracy. Group analysis revealed that left fusiform gyrus, right superior frontal gyrus, bilateral middle frontal gyri/insula, left middle temporal gyrus, precuneus and vermis of cerebellum and showed decreased cortical activities in the patient group. On the other hand, an increased level of activation in lateral prefrontal cortex and parietal lobule was observed from the patient group, all in the right hemisphere. A decreased level of activity in the left fusiform gyrus among the patient group implicates inefficient processing of facial information. An increased level of activation in prefrontal and parietal neural networks from the patient group confirms earlier findings on the impaired working memory of patients with schizophrenia.

  • PDF

Mutual information analysis of EEG during odor stimulation classified with occupations (향 자극에 따른 직업별 뇌파의 상호 정보량 분석)

  • 민병찬;진승현;강인형;전광진;김철중
    • Science of Emotion and Sensibility
    • /
    • v.6 no.1
    • /
    • pp.39-45
    • /
    • 2003
  • To investigate the changes of cortico-cortical connectivity during odor stimulation of subjects classified by occupations, the mutual information content of EEGs was examined, for general workers, perfume salespersons and professional perfume researchers. Analysis of the averaged-cross mutual information content (A-CMI) from the EEGs revealed that, among the professional perfume researchers,. changes in the A-CMI values during odor stimulation were more apparent in the frontal region of the brain, although for the general workers group and perfume salespersons group such changes were more conspicuous in the overall posterior temporal, parietal and frontal regions. These results indicate that the brains of professional perfume researchers respond to odors mainly in the frontal region, reflecting the function of the orbitofrontal cortex (OFC) due to the occupational requirement of these subjects to discriminate of identify odors. During odor stimulation, the perfume salespersons, although relatively more exposed to odors than the general workers, showed similar changes to the general workers. A-CMI value is in inverse proportion to psychological preferences of the professional perfume researchers and perfume salespersons, but this is not the case with the general workers. This suggests that functional coupling for people who are occupationally exposed to odors may be related to odors nay be related to psychological preference.

  • PDF

The Neuroanatomy and Psychophysiology of Attention (집중의 신경해부와 정신생리)

  • Lee, Sung-Hoon;Park, Yun-Jo
    • Sleep Medicine and Psychophysiology
    • /
    • v.5 no.2
    • /
    • pp.119-133
    • /
    • 1998
  • Attentional processes facilitate cognitive and behavioral performance in several ways. Attention serves to reduce the amount of information to receive. Attention enables humans to direct themselves to appropriate aspects of external environmental events and internal operations. Attention facilitates the selection of salient information and the allocation of cognitive processing appropriate to that information. Attention is not a unitary process that can be localized to a single neuroanatomical region. Before the cortical registration of sensory information, activation of important subcortical structures occurs, which is called as an orienting response. Once sensory information reaches the sensory cortex, a large number of perceptual processes occur, which provide various levels of perceptual resolution of the critical features of the stimuli. After this preattentional processing, information is integrated within higher cortical(heteromodal) systems in inferior parietal and temporal lobes. At this stage, the processing characteristics can be modified, and the biases of the system have a direct impact on attentional selection. Information flow has been traced through sensory analysis to a processing stage that enables the new information to be focused and modified in relation to preexisting biases. The limbic and paralimbic system play significant roles in modulating attentional response. It is labeled with affective salience and is integrated according to ongoing pressures from the motivational drive system of the hypothalamus. The salience of information greatly influences the allocation of attention. The frontal lobe operate response selection system with a reciprocal interaction with both the attention system of the parietal lobe and the limbic system. In this attentional process, the search with the spatial field is organized and a sequence of attentional responses is generated. Affective, motivational and appectitive impulses from limbic system and hypothalamus trigger response intention, preparation, planning, initiation and control of frontal lobe on this process. The reticular system, which produces ascending activation, catalyzes the overall system and increases attentional capacity. Also additional energetic pressures are created by the hypothalamus. As psychophysiological measurement, skin conductance, pupil diameter, muscle tension, heart rate, alpha wave of EEG can be used. Event related potentials also provide physiological evidence of attention during information process. NI component appears to be an electrophysiological index of selective attention. P3 response is developed during the attention related to stimulus discrimination, evaluation and response.

  • PDF

fMRI Investigation on Cue-induced Smoking Craving:A Case Report (흡연갈망의 신경해부학적 특이성:기능자기공명영상연구)

  • Lim, Hyun-Kook;Pae, Chi-Un;Lee, Chang-Uk
    • Korean Journal of Biological Psychiatry
    • /
    • v.12 no.1
    • /
    • pp.68-72
    • /
    • 2005
  • Object:Nicotine dependence is the most common substance abuse disorder. One of the characteristics of nicotine dependence is craving. Regional activation of the brain induced by craving for nicotine was evaluated by using functional magnetic resonance imaging to investigate neuroanatomical site of smoking craving. Method:A smoker who satisfied DSM-IV criteria for nicotine dependence and a non smoker was studied. MRI data were acquired on a 1.5T Magnetom Vision Plus with a head volume coil. Two sets of visual stimuli were presented to subjects in a random manner. One was the film scenes of inducing smoking craving and the other was neutral stimuli not related to smoking. There were two fMRI sessions before and after smoking or sham smoking. Data were analyzed using SPM99. Results:fMRI showed significant activated area in anterior cingulate and medial frontal lobes in the smoker during smoking craving. Right dorsolateral prefrontal cortex and parietal lobes were activated in the control during visual stimulation before smoking. After smoking, there was no brain activation during visual stimulation in both of smoker and non smoker. Conclusion:Metabolic activity of the anterior cingulate and medial frontal lobes increased during craving for smoking. This result suggests that fMRI may be a valuable tool in the identification of neurobiological process of craving.

  • PDF

One case Treated Cerebral Infarction with Aphasia by Jihwangumja (지황음자(地黃飮子)를 투여(投與)한 중풍(中風) 실어증(失語症) 환자 치험1례)

  • Shin Woo-Jin;Hong Hyun-Woo;Kim Ji-Yun;Jeong Jae-Ook;Seo Sang-Ho;Kim Jong-Hwan;Jang Ja-Won;Park Dong-Il
    • The Journal of Internal Korean Medicine
    • /
    • v.24 no.4_2
    • /
    • pp.1014-1022
    • /
    • 2003
  • Aphasia is speech disorder caused by injuries on the speech nerve center. It usually occur due to a disease in the right cerebral cortex and is divided into the various aphasia such as Global aphasia, Broca's aphasia, Wernicke's aphasia, conduction aphasia, Anomic aphasia, etc. Jihwangumja is used the cerebral infarction with Aphasia due to deficiency syndrome of kidneys. The purpose of this study is to examine the efficacy of oriental treatment for cerebral infarction with aphasia by Jihwangumsa. In the hospital, the patient showed the symptoms of mental disorder, Rt. hemiparesis G3/G4, aphasia, chest discomfort, obstipation, frequent urination, etc. The case showed that acute infarction on Lt. fronto-temporo-parietal lobe in Brain-CT. We identified the patient's clinical conditions and treated accordingly. As a result of treatment, symptoms were markedly improved and he was discharged. Further elaboration of oriental diagnostic classification could possibly lead to the fundamental treatment.

  • PDF

Differences in Large-scale and Sliding-window-based Functional Networks of Reappraisal and Suppression

  • Jun, Suhnyoung;Lee, Seung-Koo;Han, Sanghoon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.3
    • /
    • pp.83-102
    • /
    • 2018
  • The process model of emotion regulation suggests that cognitive reappraisal and expressive suppression engage at different time points in the regulation process. Although multiple brain regions and networks have been identified for each strategy, no articles have explored changes in network characteristics or network connectivity over time. The present study examined (a) the whole-brain network and six other resting-state networks, (b) their modularity and global efficiency, which is an index of the efficiency of information exchange across the network, (c) the degree and betweenness centrality for 160 brain regions to identify the hub nodes with the most control over the entire network, and (d) the intra-network and inter-network functional connectivity (FC). Such investigations were performed using a traditional large-scale FC analysis and a relatively recent sliding window correlation analysis. The results showed that the right inferior orbitofrontal cortex was the hub region of the whole-brain network for both strategies. The present findings of temporally altering functional activity of the networks revealed that the default mode network (DMN) activated at the early stage of reappraisal, followed by the task-positive networks (cingulo-opercular network and fronto-parietal network), emotion-processing networks (the cerebellar network and DMN), and sensorimotor network (SMN) that activated at the early stage of suppression, followed by the greater recruitment of task-positive networks and their functional connection with the emotional response-related networks (SMN and occipital network). This is the first study that provides neuroimaging evidence supporting the process model of emotion regulation by revealing the temporally varying network efficiency and intra- and inter-network functional connections of reappraisal and suppression.

Effects of Single Treatment of Anti-Dementia Drugs on Sleep-Wake Patterns in Rats

  • Jung, Ji-Young;Roh, Moo-Taek;Ko, Kyung-Kyun;Jang, Hwan-Soo;Lee, Seong-Ryong;Ha, Jeoung-Hee;Jang, Il-Sung;Lee, Ho-Won;Lee, Maan-Gee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.4
    • /
    • pp.231-236
    • /
    • 2012
  • We studied the effects of acetylcholinesterase inhibitors, donepezil and galantamine, and an N-methyl-D-aspartate (NMDA) receptor blocker, memantine, on sleep-wake architecture in rats. Screw electrodes were chronically implanted into the frontal and parietal cortex for the electroencephalography (EEG). EEG was recorded with a bio-potential amplifier for 8 h from 09:30 to 17:30. Vibration was recorded to monitor animal activity with a vibration measuring device. Sleep-wake states such as wake (W), slow-wave sleep (S) and paradoxical or rapid eye movement sleep (P), were scored every 10 sec by an experimenter. We measured mean episode duration and number of episode to determine which factor sleep disturbance was attributed to. Donepezil and memantine showed a significant increase in total W duration and decreases in total S and P duration and delta activity. Memantine showed increases in sleep latency and motor activity. Changes of S and P duration in memantine were attributed from changes of mean episode duration. Galantamine had little effect on sleep architecture. From these results, it is showed that galantamine may be an anti-dementia drug that does not cause sleep disturbances and memantine may be a drug that causes severe sleep disturbance.

Acute Spontaneous Subdural Hematoma due to Rupture of a Tiny Cortical Arteriovenous Malformation

  • Choi, Hyuk Jin;Lee, Jae Il;Nam, Kyoung Hyup;Ko, Jun Kyeung
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.6
    • /
    • pp.547-549
    • /
    • 2015
  • Acute subdural hematoma (SDH) of arterial origin is rare, especially SDH associated with an arteriovenous malformation (AVM) is extremely rare. The authors report a case of acute spontaneous SDH due to rupture of a tiny cortical AVM. A 51-year-old male presented with sudden onset headache and mentality deterioration without a history of trauma. Brain CT revealed a large volume acute SDH compressing the right cerebral hemisphere with subfalcine and tentorial herniation. Emergency decompressive craniectomy was performed to remove the hematoma and during surgery a small (5 mm sized) conglomerated aciniform mass with two surrounding enlarged vessels was identified on the parietal cortex. After warm saline irrigation of the mass, active bleeding developed from a one of the vessel. The bleeding was stopped by coagulation and the vessels were removed. Histopathological examination confirmed the lesion as an AVM. We concluded that a small cortical AVM existed at this area, and that the cortical AVM had caused the acute SDH. Follow up conventional angiography confirmed the absence of remnant AVM or any other vascular abnormality. This report demonstrates rupture of a cortical AVM is worth considering when a patient presents with non-traumatic SDH without intracerebral hemorrhage or subarachnoid hemorrhage.

The Biological Base of Learing and Memory(I):A Neuropsychological Review (학습과 기억의 생물학적 기초(I):신경심리학적 개관)

  • MunsooKim
    • Korean Journal of Cognitive Science
    • /
    • v.7 no.3
    • /
    • pp.7-36
    • /
    • 1996
  • Recebt neuropsychological studies on neurobiological bases of learning and memory in humans are reviewed. At present, cognitive psychologists belive that memory is not a unitary system. But copmosed of several independent subsystems. Adoption this perspective,this paper summarized findings regarding what kinds of memory discorders result from lesions of which brain areas and which brain areas are activated by what kind of learning/memory tasks. Short-term memory seems to involve widespread areas around the boundaries among the parietal,occipital,and temporal lobes,depending on the type of the type of the tasks and the way of presentation of the stimuli. Implicit memory,a subsystem of long-term memory,is not a unitary system itself. Thus,brain areas involved in implicit memory tasks used. It is well-known that medial temporal lobe is necessary for formation(i,e.,consolidation)of explicit memory,another subsystem of long-term memory. Storage and/or retrieval of episodic and semantic memory involve temporal neocortex. Perfromtal cortex seemas to be involved in several aspects of memory such as short term memory and retrieval of espisodic and semantic memory. Finally, a popular view on the locus of long-term memory storage is described.

  • PDF

Neural Correlates of Faux Pas Detection: An fMRI Study (헛디딤 탐지의 신경 상관: 기능적 자기공명 영상 연구)

  • Park, Min;Lee, Seung-Bok;Yoon, Hyo-Woon;Ghim, Hei-Rhee
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.1
    • /
    • pp.77-93
    • /
    • 2010
  • The aim of this study was to identify neural correlates underlying the detection of faux pas, a test of theory of mind (ToM), in Korean healthy adults. Using functional magnetic resonance imaging, we compared the brain activities associated with faux pas stories and the activities associated with control stories. Faux pas stories compared with the control stories produced activations bilaterally in the superior frontal gyrus (BA 9) and in the precuneus (BA 7). The left medial frontal gyrus (BA 9), the left superior temporal gyrus (BA 38), the left inferior temporal gyrus (BA 20) and the right inferior parietal lobule (BA 40), the right postcentral gyrus (BA 1), the right lingual gyrus (BA 18), the right transverse temporal gyrus (BA 41) were also activated. The orbitofrontal cortex and the amygdala were not found to be involved in the detection of faux pas. This result suggests that brain activations associated with ToM are dependent on the type of mental state drawn by the task.

  • PDF