• Title/Summary/Keyword: parenteral product

Search Result 4, Processing Time 0.022 seconds

Comparative Study of Particulate Contamination from Ampoule and Prefilled Syringe (앰플 및 1회용 주사용기에서의 미립자 혼입에 관한 비교연구)

  • Shim, Chang-Koo;Han, Yong-Hae;Kwon, Don-Sun
    • Journal of Pharmaceutical Investigation
    • /
    • v.21 no.3
    • /
    • pp.155-160
    • /
    • 1991
  • Particulate is the foreign insoluble material in injectable solution inadvertently present in a given product. Considerable efforts have been made to avoid or minimize particulate contamination by pharmaceutical manufacturers during the production of parenteral products. Particulate contamination of the parenteral products can occur mainly during the opening (cutting) the container immediately before clinical use. In this study, particulate contamination generated during the opening process of ampoules (conventional type, 1-point and color-break ampoules) was compared with that of a prefilled injectable container (prefilled syringe). The particles were examined under a microscope after filtration of the total fluids in the containers. Particles having wide range of size distribution were found from all the ampoules tested. The contamination from the I-point ampoule and colorbreak ampoule was much less than from the conventional ampoule. Glass particles generated by cutting the glass-made ampoules seemed a principal source of the particulate contamination. The glass-partiaulte contamination could be improved substantially by replacing the ampoule containers with the prefilled syringe. Prefilled syringe, which can be used without any cutting process. did not generate particulates during the use. Therefore, it was concluded that prefilled syringe is most preferable container for the small volume parenteral (SVP) fluids in terms of particulate contamination.

  • PDF

Parenteral Formulations Based on Albumin Particulate Technology

  • Lee, Hong-Hwa;Lee, Min-Jung;Heo, Sun-Ju;Sah, Hong-Kee
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.spc
    • /
    • pp.83-95
    • /
    • 2010
  • Over the years, nanoparticle drug delivery systems have demonstrated versatile potentials in biological, medical and pharmaceutical applications. In the pharmaceutical industry nanotechnology research has mainly focused on providing controlled drug release, targeting their delivery to specific organs, and developing parenteral formulations for poorly water soluble drugs to improve their bioavailability. Achievement in polymer industry has generated numerous polymers applicable to designing nanoparticles. From viewpoints of product development, a nanocarrier material should meet requirements for biodegradability, biocompatibility, availability, and regulatory approval crieteria. Albumin is indeed a material that fulfills such requirements. Also, the commercialization of a first albumin-bound paclitaxel nanoparticle product (Abraxane$^{TM}$) has sparked renewed interests in the application of albumin in the development of nanoparticle formulations. This paper reviews the intrinsic properties of albumin, its suitability as a nanocarrier material, and albumin-based parenteral formulation approaches. Particularly discussed in detail are albumin-based particulate injectables such as Abraxane$^{TM}$. Information on key roles of albumin in the nab$^{TM}$ technology and representative manufacturing processes of albumin particulate products are provided. It is likely that albumin-based particulate technology would extend its applications in delivering drugs, polypeptides, proteins, vaccines, nucleic acids, and genes.

Solid Lipid Nanoparticles as Drug Delivery System for Water-Insoluble Drugs

  • Li, Rihua;Lim, Soo-Jeong;Choi, Han-Gon;Lee, Mi-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.spc
    • /
    • pp.63-73
    • /
    • 2010
  • Solid lipid nanoparticles (SLNs) have emerged to combine the advantages of polymeric nanoparticles and lipid emulsions in early 1990s. SLNs can present several desirable properties derived from the solid state core. When formulating SLNs, there should be careful considerations about the physical state of the inner solid lipid core and its polymorphism and supercooling behavior. In this review, SLNs were compared to lipid emulsion and emulsion of supercooled melt to understand the unusual behaviors compared to lipid emulsions and to have insights into stability and release mechanism. SLNs have been regarded as biocompatible system because lipids are usually well-tolerable ingredients than polymers. Several studies showed good tolerability of SLNs in terms of cytotoxicity and hemolysis. Similar to various other nanoparticulate drug delivery systems, SLNs can also change biodistribution of the incorporated drugs in a way to enhance therapeutic effect. Most of all, large scale production of SLNs was extablished wihtout using organic solvents. Although there is no SLN product in the market till date, several advantagious properties of SLNs and the progress we have seen so far would make commercial product of SLNs possible before long and encourage research community to apply SLN-based formulations for water-insoluble drugs.

Pharmacokinetic behavior of lipid nanodispersion system for parenteral delivery of paclitaxel in rats

  • Choi, Sung-Up;Lee, Jung-Min;Lee, Byoung-Moo;Choi, Young -Wook
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.225.1-225.1
    • /
    • 2003
  • Purpose. Paclitaxel has demonstrated significant activity in clinical trials against a wide variety of tumors. The clinical application of Taxol$\^$\ulcorner/, a commercial product of solubilized paclitaxel with co solvents of ethanol and Cremophor, however, has been limited largely by hypersensitivity of the excipient. The aim of this study was to formulate paclitaxel-loaded lipid nanodispersions (Px-LN) for i.v. administration without toxic excipients, and to evaluate in vitro characteristics and in vivo pharmacokinetic behaviors. (omitted)

  • PDF