• Title/Summary/Keyword: parasitic slot

Search Result 24, Processing Time 0.034 seconds

Improve Matching for Rectangular Slot Antenna by Parasitic Slots

  • Anantrasirichai, N.;Satthamsakul, S.;Rakluea, P.;Wakabayashi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1676-1679
    • /
    • 2003
  • A perfect matching is the desire of antenna designers. In this paper, we improve the matching of antenna designing. In general, the efficiency of antennas has many improvements. In this paper, we choose to extend matching by adding the slots in the basic microstrip-fed rectangular slot antenna. We called it as "parasitic slots". The dominant characteristic of this addition is double efficient improvement matching and other characteristics of antenna are similar. It means that the microstrip-fed rectangular slot antenna with parasitic slots has all characteristics as same as the microstrip-fed rectangular slot antenna without parasitic slots. The antenna with parasitic slots has better matching better than the antenna without parasitic slots.

  • PDF

Optimum Return Loss of Right-Angle Triangular Slot Antenna

  • Tangkaphiphop, K.;Anantrasirichai, N.;Wakabayashi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.466-469
    • /
    • 2004
  • In this paper, we improve the matching impedance of antennas by inserting parasitic slots on the ground plane of right-angle triangular slot antennas. The designed antennas characteristics are analyzed by using Finite Different Time Domain (FDTD) method, the specific design frequency is 10 GHz and match impedance is 50 ohms. Simulation results show that the efficient of return loss and radiation patterns are improved and enhance. In this case, the right-angle triangular slot antennas with parasitic slots have matching impedance better than antennas without parasitic slots.

  • PDF

Forced Resonant Type Cutoff Cavity-Backed Slot Antenna Elements for Electromagnetic Power Transmission

  • Kim, Ki-Chai;Kwon, Ick-Seung
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.37-42
    • /
    • 2001
  • This paper presents the basic characteristics of a cutoff cavity-hacked slot antenna, for the application of spacetenna, with a feed post and a parasitic post inserted parallel to the slot. This type of antenna might effectively excite the slot and forcibly resonate the cavity by adding external reactance to the parasitic post. The Galerkin\`s method of moments is used to analyze integral equations for the unknown electric current on each post and electric field in the slot. The value of external reactance for forced resonance is discussed by deriving a determining equation, the current distribution on each post and the radiation patterns are considered. The analysis is in excellent agreement with the experiment for the radiation patterns.

  • PDF

Controllable Band-Notched Slot Antenna for UWB Communication Systems

  • Kueathaweekun, Weerathep;Anantrasirichai, Noppin;Benjangkaprasert, Chawalit;Nakasuwan, Jintana;Wakabayashi, Toshio
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.674-683
    • /
    • 2012
  • We propose a slot antenna consisting of a rectangular slot on the ground plane, fed by a microstrip line with a rectangular-ring-shaped tuning stub that can be deployed in ultra-wideband (UWB) communication systems to avoid interference with wireless local area network (WLAN) communication. Our antenna can achieve a single band-notched property from the 5 GHz frequency to the 6 GHz frequency owing to a controllable band notch that uses L- and J-shaped parasitic elements. The antenna characteristics can be modified to tune the band-notched property (4 GHz to 5 GHz or 6 GHz to 7 GHz) and the bandwidth of the band notch (1 GHz to 2 GHz). Furthermore, the shifted notch with enhanced width of the band notch from 1 GHz to 1.5 GHz is described in this paper. The UWB slot antenna and L- and J-shaped parasitic elements also provide the band-rejection function for reference in the WiMAX (3.5 GHz) and WLAN (5 GHz to 6 GHz) regions of the spectrum. Experiment results evidence the return loss performance, radiation patterns, and antenna gains at different operational frequencies.

Design of PIFA with a parasitic element for PDA terminal (기생소자를 갖는 PDA 단말기용 PIFA 설계)

  • Kim, Yong-Ho;Lee, Hong-Min
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.511-514
    • /
    • 2003
  • In this paper, describes the design of PIFA for PDA which has parasitic patch to expand the impedance bandwidth and miniaturization technique to consider the radiation pattern. To expand the impedance bandwidth, generated resonant frequency of parasitic patch is different from that of main patch. To miniaturize the physical dimension, using the folded edge and rectangular slot. The obtained impedance bandwidth is 9.4% ($2.29GHz{\sim}2.515GHz$) at VSWR${\leqq}$2 and antenna gain is 2dBi within the operating frequency.

  • PDF

U-slot Microstrip Antenna with U-shaped Parasitic Patches (U-형태의 기생 패치를 가지는 U-슬롯 마이크로스트립 안테나)

  • Kim, Ji-Hyung;Oh, Don-Jin;Park, Ik--Mo;Park, Yong-Bae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.5
    • /
    • pp.428-434
    • /
    • 2009
  • In this paper, we propose an U-slot microstrip antenna with the U-shaped parasitic patches. U-slot and parasitic patches make two resonant frequencies and one additional resonant frequency, respectively, so that the impedance band-width of the antenna is expanded. The size of radiator part is $64{\times}53\;mm^2$ and the entire size of the antenna is $150{\times}150{\times}11.5\;mm^3$. The measured bandwidth is $1.85{\sim}2.40\;GHz$. Thus, our antenna can be used for DCS1900, WCDMA and WiMax services. The radiation characteristic is almost same in the bandwidth, the beam width is about $60^{\circ}$, and the gain is more than 7 dBi.

Design and Implementation of UWB Antenna with Dual Band Rejection Characteristics (이중 대역저지 특성을 가지는 UWB 안테나 설계 및 구현)

  • Yang, Woon Geun;Nam, Tae Hyeon
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.413-419
    • /
    • 2018
  • An UWB(Ultra Wide Band) antenna with band rejection characteristics is designed and implemented. A planar radiation patch with slot, parasitic elements on both sides of strip and ground plane on back side consist the proposed antenna. The slot in the radiation patch and parasitic elements contribute corresponding bands rejection characteristics. The slot contributes for WiMAX(World interoperability for Microwave Access, 3.30~3.70 GHz) band rejection and parasitic elements contribute for X-Band(7.25~8.395 GHz) rejection. Ansoft's HFSS(High Frequency Structure Simulator) was used to design the proposed antenna and performance simulations. Simulation result showed VSWR(Voltage Standing Wave Ratio) less than 2.0 for UWB band except for dual rejection bands of 3.30~3.86 GHz and 7.21~8.39 GHz. And VSWR measurement result for the implemented antenna shows less than 2.0 for 3.10~10.60 GHz band except dual rejection bands of 3.25~3.71 GHz and 7.25~8.46 GHz.

Modified Slot-Loaded Multi-Band Microstrip Patch Antenna

  • Cho, Man-Shik;Kim, Il-Kwon;Cho, Han-Back;Yook, Jong-Gwan;Park, Han-Kyu
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2003
  • In this paper, a triple-band planar antenna is proposed for the application to miniaturized automobile safety devices operating at X band(10.5 ㎓), K band(24.15 ㎓), and Ka band(34.3 ㎓). The frequency ratio between the resonant frequencies of this antenna can be adjusted from 1.99 to 2.23 for both X band and K band by varying its slit length. Parasitic elements are added on the modified slot loaded antenna to obtain the third resonance. From numerical as well as experimental results, it has been confirmed that this type of antenna is appropriate for planar multi-band antenna systems.

Design of U-slot Array for OCS Base Station (PCS 기지국용 U-슬롯 어레이 안테나 설계)

    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.117-124
    • /
    • 2001
  • In this paper, the design of a U-slot array antenna for PCS base station has been implemented and studied. The U-slot antenna is a single layer type with an antenna volume smaller but a bandwidth lager than the designs utilizing parasitic patches, which exceed 17 % bandwidth, for the probe fed case. Designed U-slot array antenna has stable radiation patterns and an average gain above 12 dB across the PCS frequency band. In this paper, through the designing of a U-slot array antenna, we have presented the availability for PCS base station antenna.

  • PDF

DUAL BAND SLOT COUPLED MULTIPLE PATCH ANTENNA WITH BROAD BANDWIDTH AND HIGH DIRECTIVITY FOR WIRELESS ACCESS POINT (무선 액세스 포인트용 광대역의 고지향성 이중대역 슬롯 결합 다중 패치안테나)

  • Yeom, Insu;Kang, Seonghun;Jung, Changwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3074-3078
    • /
    • 2014
  • We implemented a dual-band slot-coupled patch (SCP) antenna for the external access point (AP) of the wireless local area network (WLAN) band. The antennas consist of two radiators on three layers. The first radiator is a slotted bow tie antenna operating at the 2.4-2.483 GHz band. The second radiator is a patch antenna with parasitic elements operating at 4.095-5.845 GHz. The high gain and broad bandwidth is important element of wireless access. To enhance the bandwidth, a coupled feeding was used in the first radiator and a parasitic patch was used in the second radiator. We used a parasitic patch and chock to improve the directivity and isolation in both radiators. The porposed antenna was designed by EM simulation tool and measured. The S11 of the antenna was less than -11dB (VSWR 1.8:1) at operating frequency. The peak gain was more than 6 dBi in the first antenna and more than 8 dBi in the second antenna.