• Title/Summary/Keyword: parametric modelling

Search Result 146, Processing Time 0.023 seconds

Seismic response of masonry infilled RC frames: practice-oriented models and open issues

  • Lima, Carmine;De Stefano, Gaetano;Martinelli, Enzo
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.409-436
    • /
    • 2014
  • Although it is widely accepted that the interaction -between masonry infill and structural members significantly affects the seismic response of reinforced concrete (RC) frames, this interaction is generally neglected in current design-oriented seismic analyses of structures. Moreover, the role of masonry infill is expected to be even more relevant in the case of existing frames designed only for gravitational loads, as infill walls can significantly modify both lateral strength and stiffness. However, the additional contribution to both strength and stiffness is often coupled to a modification of the global collapse mechanisms possibly resulting in brittle failure modes, generally related to irregular distributions of masonry walls throughout the frame. As a matter of principle, accurate modelling of masonry infill should be at least carried out by adopting nonlinear 2D elements. However, several practice-oriented proposals are currently available for modelling masonry infill through equivalent (nonlinear) strut elements. The present paper firstly outlines some of the well-established models currently available in the scientific literature for modelling infill panels in seismic analyses of RC frames. Then, a parametric analysis is carried out in order to demonstrate the consequences of considering such models in nonlinear static and dynamic analyses of existing RC structures. Two bay-frames with two-, three- and four-storeys are considered for performing nonlinear analyses aimed at investigating some critical aspects of modelling masonry infill and their effects on the structural response. Particularly, sensitivity analyses about specific parameters involved in the definition of the equivalent strut models, such as the constitutive force-displacement law of the panel, are proposed.

Modelling and Analysis of Roll-Type Steel Mat for Rapid Stabilization of Permafrost (II) - Parametric Analysis - (영구동토 급속안정화를 위한 롤타입강재매트의 모델링과 해석(II) - 변수해석 -)

  • Moon, Do Young;Kang, Jae Mo;Lee, Janggeun;Lee, Sang Yoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.109-117
    • /
    • 2014
  • Using the finite element analysis model presented in accompanying paper, parametric study was performed in this paper. Various parameters were considered such as the width of wheel loads-induced permanent plastic deformation, backfill, equivalent thickness and orthogonal characteristic of steel mats. The effects of these parameters were analyzed for vertical and rotational displacements, maximum moment and tensile stress. From the parametric studies, it is found that great vertical deflection and tensile stress above allowable flexural tensile strength are developed in steel mats by the wheel loads-induced permanent plastic deformation. Backfill or increasing the thickness of steel mats is a feasible solution on this problem.

Modelling of bonded and unbonded post-tensioned concrete flat slabs under flexural and thermal loading

  • Mohammed, Abbas H.;Taysi, Nildem
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.595-606
    • /
    • 2017
  • During their life span, post-tensioned concrete structures may be exposed to thermal loads. Therefore, there has been a growing interest in research on the advanced analysis and design of post-tensioned concrete slabs subjected to thermal loads. This paper investigates the structural behaviour of post-tensioned one-way spanning concrete slabs. A nonlinear finite element model for the analysis of post- tensioned unbonded and bonded concrete slabs at elevated temperatures was developed. The interface between the tendon and surrounding concrete was also modelled, allowing the tendon to retain its profile shape during the deformation of the slab. The load-deflection behaviour, load-force behaviour in the tendon, and the failure modes are presented. The numerical analysis was conducted by the finite element ANSYS software and was carried out on two different one-way concrete slabs chosen from literature. A parametric study was conducted to investigate the effect of several selected parameters on the overall behavior of post-tensioned one-way concrete slab. These parameters include the effect of tendon bonding, the effect of thermal loading and the effect of tendon profile. Comparison between uniform thermal loading and nonuniform thermal loading showed that restrained post tensioned slab with bottom surface hotter has smaller failure load capacity.

Gaussian models for bond strength evaluation of ribbed steel bars in concrete

  • Prabhat R., Prem;Branko, Savija
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.651-664
    • /
    • 2022
  • A precise prediction of the ultimate bond strength between rebar and surrounding concrete plays a major role in structural design, as it effects the load-carrying capacity and serviceability of a member significantly. In the present study, Gaussian models are employed for modelling bond strength of ribbed steel bars embedded in concrete. Gaussian models offer a non-parametric method based on Bayesian framework which is powerful, versatile, robust and accurate. Five different Gaussian models are explored in this paper-Gaussian Process (GP), Variational Heteroscedastic Gaussian Process (VHGP), Warped Gaussian Process (WGP), Sparse Spectrum Gaussian Process (SSGP), and Twin Gaussian Process (TGP). The effectiveness of the models is also evaluated in comparison to the numerous design formulae provided by the codes. The predictions from the Gaussian models are found to be closer to the experiments than those predicted using the design equations provided in various codes. The sensitivity of the models to various parameters, input feature space and sampling is also presented. It is found that GP, VHGP and SSGP are effective in prediction of the bond strength. For large data set, GP, VHGP, WGP and TGP can be computationally expensive. In such cases, SSGP can be utilized.

Study on Integrated Workflow for Designing Sustainable Tall Building - With Parametric method using Rhino Grasshopper and DIVA for Daylight Optimization

  • Kim, Hyeong-ill
    • KIEAE Journal
    • /
    • v.16 no.5
    • /
    • pp.21-28
    • /
    • 2016
  • Purpose: The Objective of this study is to explore the capabilities of an integrated modelling and simulation workflow when applied to an experiment-based research process, aimed at deriving daylight optimization strategies specific to tall buildings. Methods: Two methods were devised to apply this workflow with the help of DIVA and Rhino/Grasshopper. The first method is a multiple variant analysis by setting up an appropriate base case and analysing its daylight and energy performance, forming the basis of comparison for subsequent cases for design variants. The second method involved setting up the base case within a site context and conducting a solar irradiation study. An architectural variables such as overhang and shading device, were then defined as inputs in the parametric definition in Grasshopper to control the selected variable. Results: While the first method took advantage of the speed and efficiency of the integrated workflow, the second method was derived based on the ability to directly process simulation data within the integrated, single-software platform of the proposed workflow. Through these methods, different architectural strategies were explored, both to increase daylight penetration and to reduce radiant heat gain. The focus is on methods by which this workflow can be applied to facilitate the experimental derivation of daylight optimization strategies that are specific to tall building design.

Modelling of timber joints made with steel dowels and locally reinforced by DVW discs

  • Guan, Zhongwei;Rodd, Peter
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.391-404
    • /
    • 2003
  • Local reinforcement in dowel type timber joints is essential to improve ductility, to increase load carrying capacity and to reduce the risk of brittle failure, especially in the case of using solid dowel. In many types of reinforcing materials available today, DVW (densified veneer wood) has been demonstrated to be the most advantages in terms of compatibility, embedding performance and ductility. Preliminary studies show that using appropriately sized DVW discs bonded into the timber interfaces may be an effective way to reinforce the connection. In this paper, non-linear 3-dimensional finite element models, incorporating orthotropic and non-linear material behaviour, have been developed to simulate structural performance of the timber joints locally reinforced by DVW discs. Different contact algorithms were applied to simulate contact conditions in the joints. The models were validated by the corresponding structural tests. Correlation between the experimental results and the finite element simulations is reasonably good. Using validated finite element models, parametric studies were undertaken to investigate effects of the DVW disc sizes and the end distances on shear stresses and normal stresses in a possible failure plane in the joint.

Alternative approach for reproducing the in-plane behaviour of rubble stone walls

  • Tarque, Nicola;Camata, Guido;Benedetti, Andrea;Spacone, Enrico
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.29-38
    • /
    • 2017
  • Stone masonry is one of the oldest construction types due to the natural and free availability of stones and the relatively easy construction. Since stone masonry is brittle, it is also very vulnerable and in the case of earthquakes damage, collapses and causalities are very likely to occur, as it has been seen during the last Italian earthquake in Amatrice in 2016. In the recent years, some researchers have performed experimental tests to improve the knowledge of the behaviour of stone masonry. Concurrently, there is the need to reproduce the seismic behaviour of these structures by numerical approaches, also in consideration of the high cost of experimental tests. In this work, an alternative simplified procedure to numerically reproduce the diagonal compression and shear compression tests on a rubble stone masonry is proposed within the finite element method. The proposed procedure represents the stone units as rigid bodies and the mortar as a plastic material with compression and tension inelastic behaviour calibrated based on parametric studies. The validation of the proposed model was verified by comparison with experimental data. The advantage of this simplified methodology is the use of a limited number of degrees of freedom which allows the reduction of the computational time, which leaves the possibility to carry out parametric studies that consider different wall configurations.

Digital engineering models for prefabricated bridge piers

  • Nguyen, Duy-Cuong;Park, Seong-Jun;Shim, Chang-Su
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.35-47
    • /
    • 2022
  • Data-driven engineering is crucial for information delivery between design, fabrication, assembly, and maintenance of prefabricated structures. Design for manufacturing and assembly (DfMA) is a critical methodology for prefabricated bridge structures. In this study, a novel concept of digital engineering model that combined existing knowledge of DfMA with object-oriented parametric modeling technologies was developed. Three-dimensional (3D) geometry models and their data models for each phase of a construction project were defined for information delivery. Digital design models were used for conceptual design, including aesthetic consideration and possible variation during fabrication and assembly. The seismic performance of a bridge pier was evaluated by linking the design parameters to the calculated moment-curvature curves. Control parameters were selected to consider the tolerance control and revision of the digital models. Digitalized fabrication of the prefabricated members was realized using the digital fabrication model with G-code for a concrete printer or a robot. The fabrication error was evaluated and the design digital models were updated. The revised fabrication models were used in the preassembly simulation to guarantee constructability. For the maintenance of the bridge, the as-built information was defined for the prefabricated bridge piers. The results of this process revealed that data-driven information delivery is crucial for lifecycle management of prefabricated bridge piers.

Investigation on structural behaviour of composite cold-formed steel and reinforced concrete flooring systems

  • Omar A., Shamayleh;Harry, Far
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.895-905
    • /
    • 2022
  • Composite flooring systems consisting of cold-formed steel joists and reinforced concrete slabs offer an efficient, lightweight solution. However, utilisation of composite action to achieve enhanced strength and economical design has been limited. In this study, finite element modelling was utilised to create a three-dimensional model which was then validated against experimental results for a composite flooring system consisting of cold-formed steel joists, reinforced concrete slab and steel bolt shear connectors. This validated numerical model was then utilised to perform parametric studies on the performance of the structural system. The results from the parametric study demonstrate that increased thickness of the concrete slab and increased thickness of the cold formed steel beam resulted in higher moment capacity and stiffness of the composite flooring system. In addition, reducing the spacing of bolts and spacing of the cold formed steel beams both resulted in enhanced load capacity of the composite system. Increasing the concrete grade was also found to increase the moment capacity of the composite flooring system. Overall, the results show that an efficient, lightweight composite flooring system can be achieved and optimised by selecting suitable concrete slab thickness, cold formed beam thickness, bolt spacing, cold formed beam spacing and concrete grade.

Nonlinear finite element model of the beam-to-column connection for precast concrete frames with high ratio of the continuity tie bars

  • Sergio A. Coelho;Sergio A. Coelho
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.53-69
    • /
    • 2023
  • The rotational stiffness of a semi-rigid beam-to-column connection plays an important role in the reduction of the second-order effects in the precast concrete skeletal frames. The aim of this study is to present a detailed nonlinear finite element study to reproduce the experimental response of a semi-rigid precast beam-to-column connection composed by corbel, dowel bar and continuity tie bars available in the literature. A parametric study was carried using four arrangements of the reinforcing tie bars in the connection, including high ratio of the continuity tie bars passing around the column in the cast-in-place concrete. The results from the parametric study were compared to analytical equations proposed to evaluate the secant rotational stiffness of beam-to-column connections. The good agreement with the experimental results was obtained, demonstrating that the finite element model can accurately predict the structural behaviour of the beam-to-column connection despite its complex geometric configuration. The secant rotational stiffness of the connection was good evaluated by the analytical model available in the literature for ratio of the continuity tie bars of up to 0.69%. Precast beam-to-column connection with a ratio of the continuity tie bars higher than 1.4% had the secant stiffness overestimated. Therefore, an adjustment coefficient for the effective depth of the crack at the end of the beam was proposed for the analytical model, which is a function of the ratio of the continuity tie bars.