Browse > Article
http://dx.doi.org/10.12989/sem.2022.84.5.651

Gaussian models for bond strength evaluation of ribbed steel bars in concrete  

Prabhat R., Prem (CSIR-Structural Engineering Research Centre)
Branko, Savija (Micro Lab., Faculty of Civil Engineering and Geosciences, Delft University of Technology)
Publication Information
Structural Engineering and Mechanics / v.84, no.5, 2022 , pp. 651-664 More about this Journal
Abstract
A precise prediction of the ultimate bond strength between rebar and surrounding concrete plays a major role in structural design, as it effects the load-carrying capacity and serviceability of a member significantly. In the present study, Gaussian models are employed for modelling bond strength of ribbed steel bars embedded in concrete. Gaussian models offer a non-parametric method based on Bayesian framework which is powerful, versatile, robust and accurate. Five different Gaussian models are explored in this paper-Gaussian Process (GP), Variational Heteroscedastic Gaussian Process (VHGP), Warped Gaussian Process (WGP), Sparse Spectrum Gaussian Process (SSGP), and Twin Gaussian Process (TGP). The effectiveness of the models is also evaluated in comparison to the numerous design formulae provided by the codes. The predictions from the Gaussian models are found to be closer to the experiments than those predicted using the design equations provided in various codes. The sensitivity of the models to various parameters, input feature space and sampling is also presented. It is found that GP, VHGP and SSGP are effective in prediction of the bond strength. For large data set, GP, VHGP, WGP and TGP can be computationally expensive. In such cases, SSGP can be utilized.
Keywords
bond strength; concrete; gaussian; modelling; steel bars;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 50010-2010, G. (2010), Code for Design of Concrete Structures.
2 ACI408R-03 (2012), Bond and Development of Straight Reinforcing Bars in Tension, American Concrete Institute, Detroit, Michigan, USA.
3 AS3600 (2018), Concrete Structures, Standards Association of Australia, North Sydney.
4 Cairns, J. (2015), "Bond and anchorage of embedded steel reinforcement in fib Model Code 2010", Struct. Concrete, 16(1), 45-55. https://doi.org/10.1002/suco.201400043.   DOI
5 CEB-FIB (2013), Model Code for Concrete Structures.
6 Chen, H.J., Huang, C.H. and Kao, Z.Y. (2004), "Experimental investigation on steel-concrete bond in lightweight and normal weight concrete", Struct. Eng. Mech., 17(2), 141-152. https://doi.org/10.12989/sem.2004.17.2.141.   DOI
7 Chen, H.P. and Nepal, J. (2015), "Stochastic modelling and lifecycle performance assessment of bond strength of corroded reinforcement in concrete", Struct. Eng. Mech., 54(2), 319-336. https://doi.org/10.12989/sem.2015.54.2.319.   DOI
8 CSA-A23.3 (2004), Design of Concrete Structures, CSA Standard, Canadian Standard Association.
9 Darwin, D., Tholen, M.L., Idun, E.K. and Zuo, J. (1995), "Splice strength of high relative rib area reinforcing bars", Technical Report, University of Kansas Center for Research, Inc.
10 Moodi, Y., Sohrabi, M.R. and Mousavi, S.R. (2021), "Corrosion effect of the main rebar and stirrups on the bond strength of RC beams", Struct., 32, 1444-1454. https://doi.org/10.1016/j.istruc.2021.03.096.   DOI
11 Mousavi, S., Dehestani, M. and Mousavi, K. (2017), "Bond strength and development length of steel bar in unconfined self-consolidating concrete", Eng. Struct., 131, 587-598. https://doi.org/10.1016/j.engstruct.2016.10.029.   DOI
12 Orangun, C.O., Jirsa, J. and Breen, J. (1977), "A reevaulation of test data on development length and splices", J. Proc., 74, 114-122.
13 Prem, P.R. and Murthy, A.R. (2017), "Acoustic emission monitoring of reinforced concrete beams subjected to four-point-bending", Appl. Acoust., 117, 28-38. https://doi.org/10.1016/j.apacoust.2016.08.006.   DOI
14 Prem, P.R., Murthy, A.R. and Verma, M. (2018), "Theoretical modelling and acoustic emission monitoring of RC beams strengthened with UHPC", Constr. Build. Mater., 158, 670-682. https://doi.org/10.1016/j.conbuildmat.2017.10.063.   DOI
15 Prem, P.R., Thirumalaiselvi, A. and Verma, M. (2019), "Applied linear and nonlinear statistical models for evaluating strength of Geopolymer concrete", Comput. Concrete, 24(1), 7-17. https://doi.org/10.12989/cac.2019.24.1.007   DOI
16 Prem, P.R., Verma, M. and Ambily, P. (2021a), "Damage characterization of reinforced concrete beams under different failure modes using acoustic emission", Struct., 30, 174-187. https://doi.org/10.1016/j.istruc.2021.01.007.   DOI
17 Prem, P.R., Verma, M., Murthy, A.R. and Ambily, P. (2021b), "Smart monitoring of strengthened beams made of ultrahigh performance concrete using integrated and nonintegrated acoustic emission approach", Struct. Control Hlth. Monit., 28(5), e2704. https://doi.org/10.1002/stc.2704.   DOI
18 EC2 (2004), Design of Concrete Structures-Part 1.1: General Rules and Rules for Buildings, European Committee for Standardization Euro Code 2.
19 Zhou, H., Liang, X., Wang, Z., Zhang, X. and Xing, F. (2017), "Bond deterioration of corroded steel in two different concrete mixes", Struct. Eng. Mech., 63(6), 725-734. https://doi.org/10.12989/sem.2017.63.6.725.   DOI
20 Zuo, J. and Darwin, D. (2000), "Splice strength of conventional and high relative rib area bars in normal and high-strength concrete", ACI Struct. J., 97(4), 630-641. 
21 Eligehausen, R., Popov, E.P. and Bertero, V.V. (1982), "Local bond stress-slip relationships of deformed bars under generalized excitations", Proceedings of the 7th European Conference on Earthquake Engineering, Vol. 4, Athens, Greece, 69-80.
22 Esfahani, M.R. and Kianoush, M.R. (2005), "Development/splice length of reinforcing bars", ACI Struct. J., 102(1), 22.
23 Esfahani, M.R. and Rangan, B.V. (1998), "Bond between normal strength and high-strength concrete (HSC) and reinforcing bars in splices in beams", ACI Struct. J., 95(3), 272-280.
24 Golafshani, E.M., Rahai, A. and Kebria, S.S.H. (2014), "Prediction of the bond strength of ribbed steel bars in concrete based on genetic programming", Comput. Concrete, 14(3), 327-345. https://doi.org/10.12989/cac.2014.14.3.327.   DOI
25 Gu, J.B. and Wang, J.Y. (2022), "Shear behavior of a demountable bolted connector in steel-UHPC lightweight composite structures", Struct. Eng. Mech., 81(5), 551-563. https://doi.org/10.12989/sem.2022.81.5.551.   DOI
26 Harajli, M. (2004), "Comparison of bond strength of steel bars in normal-and high-strength concrete", J. Mater. Civil Eng., 16(4), 365-374. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:4(365).   DOI
27 JSCE (2007), Standard Specification for Concrete Structures: Design, Japan Society of Civil Engineers.
28 Kemp, E. and Wilhelm, W. (1979), "Investigation of the parameters influencing bond cracking", J. Proc., 76, 47-72.
29 Lv, X., Yu, Z. and Shan, Z. (2021), "Bond stress-slip model for rebar-concrete interface under monotonic and cyclic loading", Struct., 34, 498-506. https://doi.org/10.1016/j.istruc.2021.07.093.   DOI
30 Rilem, T. (1994), "RILEM recommendations for the testing and use of constructions materials", RC, 6, 218-220.
31 Rockson, C., Tamanna, K., Alam, M.S. and Rteil, A. (2020), "Effect of cover on bond strength of structural concrete using commercially produced recycled coarse and fine aggregates", Constr. Build. Mater., 255, 119275. https://doi.org/10.1016/j.conbuildmat.2020.119275.   DOI
32 Su, M., Dai, G. and Peng, H. (2020), "Bond-slip constitutive model of concrete to cement-asphalt mortar interface for slab track structure", Struct. Eng. Mech., 74(5), 589-600. https://doi.org/10.12989/sem.2020.74.5.589.   DOI
33 Tekle, B.H., Cui, Y. and Khennane, A. (2020), "Bond properties of steel and sand-coated GFRP bars in Alkali activated cement concrete", Struct. Eng. Mech., 75(1), 123-131. https://doi.org/10.12989/sem.2020.75.1.123.   DOI
34 Tepfers, R. (1973), "A theory of bond applied to overlapped tensile reinforcement splices for deformed bars", Division of Concrete Structures, Chalmers University of Technology.
35 Thirumalaiselvi, A., Verma, M., Anandavalli, N. and Rajasankar, J. (2018), "Response prediction of laced steel-concrete composite beams using machine learning algorithms", Struct. Eng. Mech., 66(3), 399-409. https://doi.org/10.12989/sem.2018.66.3.399.   DOI
36 Verma, M., Thirumalaiselvi, A. and Rajasankar, J. (2017), "Kernel-based models for prediction of cement compressive strength", Neur. Comput. Appl., 28(1), 1083-1100. https://doi.org/10.1007/s00521-016-2419-0.   DOI
37 Wu, Y.F. and Zhao, X.M. (2013), "Unified bond stress-slip model for reinforced concrete", J. Struct. Eng., 139(11), 1951-1962. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000747.   DOI
38 Xu, Y. (1990), "Experimental study of anchorage properties for deformed bars in concrete", Tsinghua, Beijing.