• Title/Summary/Keyword: parametric identification

Search Result 129, Processing Time 0.028 seconds

Detection and parametric identification of structural nonlinear restoring forces from partial measurements of structural responses

  • Lei, Ying;Hua, Wei;Luo, Sujuan;He, Mingyu
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.291-304
    • /
    • 2015
  • Compared with the identification of linear structures, it is more challenging to conduct identification of nonlinear structure systems, especially when the locations of structural nonlinearities are not clear in structural systems. Moreover, it is highly desirable to develop methods of parametric identification using partial measurements of structural responses for practical application. To cope with these issues, an identification method is proposed in this paper for the detection and parametric identification of structural nonlinear restoring forces using only partial measurements of structural responses. First, an equivalent linear structural system is proposed for a nonlinear structure and the locations of structural nonlinearities are detected. Then, the parameters of structural nonlinear restoring forces at the locations of identified structural nonlinearities together with the linear part structural parameters are identified by the extended Kalman filter. The proposed method simplifies the identification of nonlinear structures. Numerical examples of the identification of two nonlinear multi-story shear frames and a planar nonlinear truss with different nonlinear models and locations are used to validate the proposed method.

Crack identification with parametric optimization of entropy & wavelet transformation

  • Wimarshana, Buddhi;Wu, Nan;Wu, Christine
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.1
    • /
    • pp.33-52
    • /
    • 2017
  • A cantilever beam with a breathing crack is studied to improve the breathing crack identification sensitivity by the parametric optimization of sample entropy and wavelet transformation. Crack breathing is a special bi-linear phenomenon experienced by fatigue cracks which are under dynamic loadings. Entropy is a measure, which can quantify the complexity or irregularity in system dynamics, and hence employed to quantify the bi-linearity/irregularity of the vibration response, which is induced by the breathing phenomenon of a fatigue crack. To improve the sensitivity of entropy measurement for crack identification, wavelet transformation is merged with entropy. The crack identification is studied under different sinusoidal excitation frequencies of the cantilever beam. It is found that, for the excitation frequencies close to the first modal frequency of the beam structure, the method is capable of detecting only 22% of the crack depth percentage ratio with respect to the thickness of the beam. Using parametric optimization of sample entropy and wavelet transformation, this crack identification sensitivity is improved up to 8%. The experimental studies are carried out, and experimental results successfully validate the numerical parametric optimization process.

A Study on the AR Identification of unknown system using Cumulant (Cumulant를 이용한 미지 시스템의 AR 식별에 관한 연구)

  • Lim, Seung-Gag
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.2 s.344
    • /
    • pp.39-43
    • /
    • 2006
  • This paper deals with the AR Identification of unknown system using cumulant, which is the 3rd order statistics of output signal in the presence of the noise signal. The algorithms for identification of unknown system we applies to the AR identification method using the cumulant which is possible to the guarantees of global convergence and the representation of amplitude and phase information of system among with the method of parametric modeling. In the process of identification, we considered unknown system to the one of AR system. After the generation of input signal, it was being passed through the system then We use the its output signal that the noise is added. As a result of identification of AR system by changing the signal to noise ratio, we get the fairly good results compared to original system output values and confirmed that the pole was located in the unit circle of z transform.

Parametric identification of a cable-stayed bridge using least square estimation with substructure approach

  • Huang, Hongwei;Yang, Yaohua;Sun, Limin
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.425-445
    • /
    • 2015
  • Parametric identification of structures is one of the important aspects of structural health monitoring. Most of the techniques available in the literature have been proved to be effective for structures with small degree of freedoms. However, the problem becomes challenging when the structure system is large, such as bridge structures. Therefore, it is highly desirable to develop parametric identification methods that are applicable to complex structures. In this paper, the LSE based techniques will be combined with the substructure approach for identifying the parameters of a cable-stayed bridge with large degree of freedoms. Numerical analysis has been carried out for substructures extracted from the 2-dimentional (2D) finite element model of a cable-stayed bridge. Only vertical white noise excitations are applied to the structure, and two different cases are considered where the structural damping is not included or included. Simulation results demonstrate that the proposed approach is capable of identifying the structural parameters with high accuracy without measurement noises.

A Novel Parametric Identification Method Using a Dynamic Encoding Algorithm for Searches (DEAS)

  • Kim, Jong-Wook;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.45.6-45
    • /
    • 2002
  • In this paper, a novel optimization algorithm which searches for the local minima of a given cost function is proposed using the familiar property of a binary string, and is applied to the parametric identification of a continuous-time state equation by the estimation of system parameters as well as initial state values. A simple electrical circuit severs as an example, whose precise identification results show the superiority of the proposed algorithm.

  • PDF

A Study on the Multi-sensor Data Fusion System for Ground Target Identification (지상표적식별을 위한 다중센서기반의 정보융합시스템에 관한 연구)

  • Gang, Seok-Hun
    • Journal of National Security and Military Science
    • /
    • s.1
    • /
    • pp.191-229
    • /
    • 2003
  • Multi-sensor data fusion techniques combine evidences from multiple sensors in order to get more accurate and efficient meaningful information through several process levels that may not be possible from a single sensor alone. One of the most important parts in the data fusion system is the identification fusion, and it can be categorized into physical models, parametric classification and cognitive-based models, and parametric classification technique is usually used in multi-sensor data fusion system by its characteristic. In this paper, we propose a novel heuristic identification fusion method in which we adopt desirable properties from not only parametric classification technique but also cognitive-based models in order to meet the realtime processing requirements.

  • PDF

Parametric Robust Control and Identification(PROCI) Toolbox (매개변수적 강인제어 및 모델 식별 GUI Tool)

  • 조태신;우영태;최선욱;기진호;김동형;정재윤;양대정;이재관;김영철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.380-380
    • /
    • 2000
  • We have developed a design/analysis tool for use with Mat lab whick is named as "Parametric Robust Control and Identification(PROCI)". The tool is composed of three parts: Part i) consists of the identification of the continuous time transfer function by using either time domain input-output data or frequency response data, which might be experimentally obtained. Part ii) is the CDM synthesis of classical controller such as PID, Lead/Lag compensators. In part iii), the analysis of robustness of overall system can be dealt with. This tool allows us to analyze completely most of robustness issues with respect to the interval uncertaintyncertainty

  • PDF

A Robust Control System Design for Compensating Hysteresis of a Piezoelectric Actuator-based Actuation Unit (압전 소자 기반 구동 유닛의 히스테리시스 보상 강인 제어기 설계)

  • Kim, Hwa-Soo;Kim, Jong-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.324-330
    • /
    • 2012
  • In this paper, we presents a robust control system design for compensating hysteresis of a piezoelectric actuator-based actuation unit. First, the dynamics between the input voltage and the output displacement of the actuation unit are unravelled via a non-parametric system identification method. From the dynamic characteristics of those experimental transfer functions, a parametric model is then derived, whose dynamics match those of the non-parametric ones under various conditions on input voltages. A robust controller is constructed on the basis of this parametric model in order not only to effectively compensate the hysteresis of the actuation unit but also to guarantee the robust stability. Extensive experiments show that the proposed robust control system successfully mitigate the effect of the hysteresis and improve the tracking capability of the actuation unit.

Probabilistic damage detection of structures with uncertainties under unknown excitations based on Parametric Kalman filter with unknown Input

  • Liu, Lijun;Su, Han;Lei, Ying
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.779-788
    • /
    • 2017
  • System identification and damage detection for structural health monitoring have received considerable attention. Various time domain analysis methodologies based on measured vibration data of structures have been proposed. Among them, recursive least-squares estimation of structural parameters which is also known as parametric Kalman filter (PKF) approach has been studied. However, the conventional PKF requires that all the external excitations (inputs) be available. On the other hand, structural uncertainties are inevitable for civil infrastructures, it is necessary to develop approaches for probabilistic damage detection of structures. In this paper, a parametric Kalman filter with unknown inputs (PKF-UI) is proposed for the simultaneous identification of structural parameters and the unmeasured external inputs. Analytical recursive formulations of the proposed PKF-UI are derived based on the conventional PKF. Two scenarios of linear observation equations and nonlinear observation equations are discussed, respectively. Such a straightforward derivation of PKF-UI is not available in the literature. Then, the proposed PKF-UI is utilized for probabilistic damage detection of structures by considering the uncertainties of structural parameters. Structural damage index and the damage probability are derived from the statistical values of the identified structural parameters of intact and damaged structure. Some numerical examples are used to validate the proposed method.

On parameter identification algorithm using VSS theory (가변구조이론에 의한 파라미터 identification 알고리즘)

  • 심귀보;한동균;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.927-930
    • /
    • 1992
  • VSS identification approach is based on following concept, i.e. while in sliding motion, the switching of control inputs refects system uncertainites. Therefore, if there exist some operations that make the information form the switiching control inputs be achievable, then the unknown parameters can be actually identification mechanisms which can fully make use of the available information. Two different types of VSS identifiers are taken into consideration. The first type uses adjustable model whose structure is similar to that of identified systems. From the viewpoint of contro, this type of VSS identifiers may be regraded as direct identifier vecause the identified system is handled as an open loop. On the other hand, if the identified system is controlable in the sense of VSS(sliding mode can be generated through chosing control inputs), the second type of VSS identifier, the indirect VSS identifier, can be constructed according to the linerized system strucutre while staying in sliding mode. Therefroe it can be applied to some nonlinear systems which are not linear in parametric space by general identification algorithms, whereas linear in parametric space when sliding mode is existed.

  • PDF