• Title/Summary/Keyword: parametric design evaluation

Search Result 134, Processing Time 0.019 seconds

Evaluation of p-y Curves of Piles in Soft Deposits by 3-Dimensional Numerical Analysis (3차원 수치해석을 이용한 점성토 지반의 p-y 곡선 산정)

  • Lee, Si-Hoon;Kim, Sung-Ryul;Lee, Ju-Hyung;Chung, Moon-Kyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.7
    • /
    • pp.47-57
    • /
    • 2011
  • The p-y curve has been used to design pile foundations subjected to lateral loading. Although the p-y curve has a large influence on the pile lateral behavior, p-y curves have not been clearly suggested. In this study, the p-y curve of clay was evaluated for drilled shafts in marine deposits by using 3-dimensional numerical analyses. First, the optimization study was performed to properly determine boundary extent, mesh size, and interface stiffness. The numerical modeling in the study was verified by comparing the calculated and the pile loading test results. Then, the p-y curves of single and group piles were evaluated from the parametric study. The selected parameters were pile diameter, pile Young's modulus and pile head fixed condition for a single pile, and pile spacing for group piles. Finally, the p-multiplier was evaluated by comparing the p-y curves of a single pile and group piles. As a result, the p-multiplier at pile spacing of 3D was 0.83, 0.67 and 0.78 for the front, middle, and back row piles, respectively, and showed values similar to those of O'Neill and Reese (1999). For the pile group with pile spacing larger than 60, the group effect can be ignorable.

Evaluation of Optimum Spacing between Anchor Bodies of Distributive Compression Anchor Using Numerical Simulation (수치해석을 이용한 압축 분산형 앵커의 내하체 최적 간격 산정)

  • Gu, Kyo-Young;Shin, Gyu-Bum;Chung, Choong-Ki;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.7
    • /
    • pp.29-39
    • /
    • 2019
  • Load distributive compression anchors distribute the compressive stress in the grout and increase the pull-out capacity of the anchor by using multiple anchor bodies. In this anchor type, the spacing between the anchor bodies has a large influence on the stress in the grout. However, there are few researches about the spacing and there are no design standards. Therefore, the effect of the anchor body spacing on the grout stress was analyzed by performing finite element analyses. First, the applicability of the numerical modeling was verified by comparing with field test results of a compression anchor. Then, the parametric study was performed varying soil type, anchor body spacing, and load magnitude. The analysis results showed that the maximum compressive stress in the grout increased at the narrower spacing and the tensile stress developed at the wider spacing. Therefore, the optimum spacing was defined as the spacing, which prevents the superposition of compressive stresses and minimize the tensile stress. Finally, the optimum spacing was proposed according to the soil type and the load magnitude.

Effect of environmental enrichment for piglets in the nursery phase

  • Padilha-Boaretto, Joselaine Bortolanza;Groff-Urayama, Priscila Michelin;Einsfeld, Suelen Maria;de Souza, Cleverson;Mendes, Angelica Signor;Maeda, Emilyn Midori;Takahashi, Sabrina Endo
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.154-160
    • /
    • 2021
  • Objective: The effect of environmental enrichment on the behaviour of piglets in the nursery phase was evaluated. Methods: A total of 450 hybrid pigs (21 day old), including both females and uncastrated males, weighing approximately 6 kg, were distributed in a completely randomised design with 3 treatments and 3 replicates of 50 animals each. The treatments were: i) pen without environmental enrichment (control), ii) treatment consisting of continuous environmental enrichment (CEE) with rubber balls throughout the experimental period, and iii) treatment consisting of environmental enrichment with washed balls (EEWB) during the whole experimental period which were removed daily for washing. For the behavioural evaluation, 10 animals were randomly selected per replicate. The behavioural assessments were performed once a week, from 8 am to 6 pm, using images captured with a video camera. The data were submitted to non-parametric analyses, the means were compared using the Bonferroni test, and Person's correlations were also calculated. Results: A statistical difference (p = 0.001) was observed in the B5 (playful) behaviour; the animals in the EEWB treatment group had a higher frequency of this behaviour than animals in the control treatment group. The animals in the control group showed a higher frequency of B7 behaviour (lying down) (p = 0.026) than those in the EEWB and CEE treatment groups. The animals in the control group had a higher frequency of the B9 (belly nosing) behaviour than those in the EEWB group (p = 0.015). There was a tendency towards a higher frequency of behaviour B3 (walking in the pen) (p = 0.067) when the animals received the control treatment than treatments EEWB or CEE. Conclusion: The use of an enriching object improved the animal welfare and altered the correlation between the evaluated behaviours compared to the animals that did not have environmental enrichment.

Evaluation of Tensions and Prediction of Deformations for the Fabric Reinforeced -Earth Walls (섬유 보강토벽체의 인장력 평가 및 변형 예측)

  • Kim, Hong-Taek;Lee, Eun-Su;Song, Byeong-Ung
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.157-178
    • /
    • 1996
  • Current design methods for reinforced earth structures take no account of the magnitude of the strains induced in the tensile members as these are invariably manufactured from high modulus materials, such as steel, where straits are unlikely to be significant. With fabrics, however, large strains may frequently be induced and it is important to determine these to enable the stability of the structure to be assessed. In the present paper internal design method of analysis relating to the use of fabric reinforcements in reinforced earth structures for both stress and strain considerations is presented. For the internal stability analysis against rupture and pullout of the fabric reinforcements, a strain compatibility analysis procedure that considers the effects of reinforcement stiffness, relative movement between the soil and reinforcements, and compaction-induced stresses as studied by Ehrlich 8l Mitchell is used. I Bowever, the soil-reinforcement interaction is modeled by relating nonlinear elastic soil behavior to nonlinear response of the reinforcement. The soil constitutive model used is a modified vertsion of the hyperbolic soil model and compaction stress model proposed by Duncan et at., and iterative step-loading approach is used to take nonlinear soil behavior into consideration. The effects of seepage pressures are also dealt with in the proposed method of analy For purposes of assessing the strain behavior oi the fabric reinforcements, nonlinear model of hyperbolic form describing the load-extension relation of fabrics is employed. A procedure for specifying the strength characteristics of paraweb polyester fibre multicord, needle punched non-woven geotHxtile and knitted polyester geogrid is also described which may provide a more convenient procedure for incorporating the fablic properties into the prediction of fabric deformations. An attempt to define improvement in bond-linkage at the interconnecting nodes of the fabric reinforced earth stracture due to the confining stress is further made. The proposed method of analysis has been applied to estimate the maximum tensions, deformations and strains of the fabric reinforcements. The results are then compared with those of finite element analysis and experimental tests, and show in general good agreements indicating the effectiveness of the proposed method of analysis. Analytical parametric studies are also carried out to investigate the effects of relative soil-fabric reinforcement stiffness, locked-in stresses, compaction load and seepage pressures on the magnitude and variation of the fabric deformations.

  • PDF