• Title/Summary/Keyword: parameter characterization

Search Result 262, Processing Time 0.022 seconds

Characterization of Crystal Structure for Nanosized Noble Metal Particles Fabricated by ERC(Evaporation and Rapid Condensation) Method (증기급속응축법 제조 귀금속 나노분말의 결정학적 특성 연구)

  • Yu, Yeon-Tae
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.285-291
    • /
    • 2003
  • The nanosized silver and gold particles are prepared by ERC method in which metal vapors with high temperature is rapidly quenched by coolants such as liquid nitrogen or liquid argon. In order to monitor the crystal structural changes on the internal and the surface of the nanosized noble metal particles, lattice parameter, internal strain and Debye-Waller factor are investigated, and the calculation of X-ray diffraction scattering intensity is performed. The lattice parameters of silver and gold particles agree with those of bulk materials, and crystal internal strain of the metal particles is not changed by rapid cooling. The Debye-Waller factor of gold particles is increased with decreasing particle size because of the surface softening phenomenon of nanosized particles, but the crystal structural change on the surface of the particles is not detected from the comparison the calculated X-ray diffraction profile with the experimental profile on gold particles with the particle size of 4 nm.

A Study of Rolling Characterization on Mg Alloy Sheet (마그네슘 합금 판재의 압연특성연구)

  • Jeong, Y.G.;Lee, J.B.;Kim, W.J.;Lee, G.A.;Choi, S.;Jeong, H.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.53-56
    • /
    • 2006
  • Magnesium alloy AZ31, which processed by conventional rolling or extrusion, has high anisotropy of mechanical properties in its strength and elongation at room temperature. We compared the influence of differential speed rolling with conventional rolling process on microstructure and mechanical properties of commercial AZ31 sheet. Commercial AZ31 alloy sheets were processed with conventional and differential speed rolling with thickness reduction ratio of 30% at a various temperature. The elongation of AZ31 alloy, warm-rolled by differential speed rolling is larger than those rolled by conventional rolling. Besides, grain size and distribution on microstructure of the conventional rolled materials were coarse and inhomogeneous, on the contrary, those of the differential speed rolled were fine and homogeneous.

  • PDF

Groundwater Characterization according to Hydraulic Conductivity Input Method (수리전도도 적용 방식에 따른 지하수특성 분석)

  • Ahn, Seung-Seop;Park, Dong-Il
    • Journal of Environmental Science International
    • /
    • v.24 no.7
    • /
    • pp.939-946
    • /
    • 2015
  • Hydraulic conductivity is an important parameter in the analytical model of groundwater. This study analyzed the groundwater movement characteristics by estimating optimal parameters according to hydraulic conductivity input methods with the MODFLOW model which is widely used. It first estimated the optimal parameters by dividing hydraulic conductivity zones by attitude. Next, it estimated optimal parameters by geological characteristic. It analyzed the groundwater movement characteristics by applying the recharge quantity and amount of evapotranspiration of drought periods and flood years with the estimated parameters. As the result was analyzed that there are differences of observation water level values according to hydraulic conductivity input methods but there is no big differences of overall groundwater movement characteristics by hydraulic conductivity input method, the two methods have found to be applicability in analyses of groundwater. So, it is judged that studies on more exact application of hydraulic conductivity and the application methods are needed.

Estimation of Discontinuity Orientations in Excavation Faces (굴착면에서의 분리면방향성 평가)

  • Ro, Byung-Don;Han, Byeong-Hyeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1484-1489
    • /
    • 2005
  • An inhomogeneous and anisotropic rock has different properties at different location. Thus, this refers to any of the properties which we may be measuring. There are two concepts of rock mass, namely, CHILE(Continuous, Homogeneous, Isotropic, Linear Elastic) material and DIANE(Discontinuous, Inhomogeneous, Anisotropic, Non-linear Elastic) rock. The former is essentially the properties of intact rock, the latter is essentially the properties governed by the structure of rock. In geotechnical aspect, the most important parameter is strength of rock or rock mass. In particular, characteristics of strength of rock mass depend upon the orientation of discontinuities And this orientation of discontinuities has different properties at different direction of excavation. Therefore, it needs for characterization of different properties of discontinuity orientation against different direction of excavation.

  • PDF

Statistical Factor Analysis of Scanning Electron Microscope (주사전자 현미경의 통계적 인자 해석)

  • Kwon, Sang-Hee;Kim, Byung-Whan
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.335-337
    • /
    • 2009
  • A scanning electron microscope(SEM) is a system that visualizes complex surface features. The resolution of SEM is affected by each of equipment components. In this study, we examined the effects of the four factors including the beam current, magnification, voltage and working distance. A statistical analysis was conducted to investigate the main and interaction effects. For a systematic characterization, a $2^4$ full factorial experiment was conducted. The $R^2$ of constructed statistical model was 88.9%. The main effect revealed that the current and working distance are dominant factors. Of the interactions, those between the current and voltage yielded the highest interaction. 3D plots generated from the model were used to explore various parameter effects.

  • PDF

Wavelet Characterization of Profile Uniformity Using Neural Network

  • Park, Won-Sun;Lim, Myo-Teak;Kim, Byungwhan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.46.5-46
    • /
    • 2002
  • As device dimension shrinks down to sub 100nm, it is increasingly important to monitor plasma states. Plasma etching is a key means to fine patterning of thin films. Many parameters are involved in etching and each parameter has different impact on process performances, including etch rate and profile. The uniformity of etch responses should be maintained high to improve device yield and throughput. The uniformity can be measured on any etch response. The most difficulty arises when attempting to characterize etched profile. Conventionally, the profile has been estimated by measuring the slope or angle of etched pattern. One critical drawback in this measurement is that this is unable to cap...

  • PDF

The research about the electric characterization in accordance with structural dimension and temperature variation. (고온 영역에서의 SOI EDMOS의 Dimension과 온도 변화에 따른 전기적 특성에 관한 연구)

  • Park, Jin-Woo;Im, Dong-Ju;Gu, Young-Sea;No, Tae-Moon;An, Chel
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1057-1060
    • /
    • 2003
  • This paper is about the optimized fabricated parameter in the EDMOSFET(Extended drain MOSFET) with a various temperature. As we know, the two important factors of EDMOSFET parameters are breakdown voltage and on Resistance. So, we have aims of the power EDMOSFET design to have high breakdown voltage and low on resistance. Thus in this paper, we will show the figure of merit in LDMOS (BV/Ron) in accordance with increase in temperature(300K-500K, step:50K), and measure electronic characteristics of power EDMOSFET. As a result, the important factors in design of EDMOS are temperature and Lg.

  • PDF

Numerical analysis of a new SMA-based seismic damper system and material characterization of two commercial NiTi-alloys

  • Olsen, J.S.;Van der Eijk, C.;Zhang, Z.L.
    • Smart Structures and Systems
    • /
    • v.4 no.2
    • /
    • pp.137-152
    • /
    • 2008
  • The work presented in this paper includes material characterisation and an investigation of suitability in seismic dampers for two commercially available NiTi-alloys, along with a numerical analysis of a new damper system employing composite NiTi-wires. Numerical simulations of the new damper system are conducted, using Brinson's one-dimensional constitutive model for shape memory alloys, with emphasis on the system's energy dissipation capabilities. The two alloys tested showed some unwanted residual strain at temperatures higher than $A_f$, possibly due to stress concentrations near inclusions in the material. These findings show that the alloys are not ideal, but may be employed in a seismic damper if precautions are made. The numerical investigations indicate that using composite NiTi-wires in a seismic damper enhances the energy dissipation capabilities for a wider working temperature range.

A Study on Effect of Forming Parameters in Semi-Solid Forging by Rigid-Thermoviscoplastic Finite Element Method (강-열점소성 유한요소법을 이용한 반용융단조시 성형인자들의 영향에 관한 연구)

  • 윤종훈;김낙수;임용택;이준두
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.179-184
    • /
    • 1998
  • Semi-solid forging can be applied in industry only with enough knowledge of the effects of the forming parameters related with the process and their exact control which can be obtained by empirical or numerical methods. In the current study, the effects of process variables on semi-solid forging are discussed based on mainly numerical results. Die preheating temperature, initial solid fraction of the workpiece, and die velocity were selected as process variables, and numerical analyses using a rigid-thermoviscoplastic finite element approach that considered the release of latent heat due to phase change were carried out. In the analyses, a proposed flow stress material characterization and a solid fraction updating algorithm were employed. The obtained results from numerical analysis are discussed and are compared with some experimental observations.

  • PDF

Characterization of Radial Stress in Curved Beams

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.128-136
    • /
    • 2009
  • Curved glued laminated timber (glulam) is rapidly coming into the domestic modern timber frame buildings and predominant in building construction. The radial stress is frequently occurred in curved beams and is a critical design parameter in curved glulam. Three models, Wilson equation, Exact solution and Approximation equation were introduced to determine the radial stress of curved glulam under pure bending condition. It is obvious that radial stress distribution between small radius and large radius was different due to slight change of neutral plane location to center line. If the beam design with extremely small radius, it should be considered to determine the exact location of maximum radial stress. The current standard KSF 3021 was reviewed and would be considered some adjustment determining the optimum radius in curved glulam. Current design principle is that the stress factor is given by the curvature term only in constant depth of the beam, but like tapered or small radius of beams, the stress factor by Wilson equation was underestimated. So current design formula should be considered to improvement for characterizing the radial stress factor under pure bending condition.