• Title/Summary/Keyword: parallel web crawlers

Search Result 2, Processing Time 0.03 seconds

Deep Web and MapReduce

  • Tao, Yufei
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.3
    • /
    • pp.147-158
    • /
    • 2013
  • This invited paper introduces results on Web science and technology obtained during work with the Korea Advanced Institute of Science and Technology. In the first part, we discuss algorithms for exploring the deep Web, which refers to the collection of Web pages that cannot be reached by conventional Web crawlers. In the second part, we discuss sorting algorithms on the MapReduce system, which has become a dominant paradigm for massive parallel computing.

Implementation of a Parallel Web Crawler for the Odysseus Large-Scale Search Engine (오디세우스 대용량 검색 엔진을 위한 병렬 웹 크롤러의 구현)

  • Shin, Eun-Jeong;Kim, Yi-Reun;Heo, Jun-Seok;Whang, Kyu-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.6
    • /
    • pp.567-581
    • /
    • 2008
  • As the size of the web is growing explosively, search engines are becoming increasingly important as the primary means to retrieve information from the Internet. A search engine periodically downloads web pages and stores them in the database to provide readers with up-to-date search results. The web crawler is a program that downloads and stores web pages for this purpose. A large-scale search engines uses a parallel web crawler to retrieve the collection of web pages maximizing the download rate. However, the service architecture or experimental analysis of parallel web crawlers has not been fully discussed in the literature. In this paper, we propose an architecture of the parallel web crawler and discuss implementation issues in detail. The proposed parallel web crawler is based on the coordinator/agent model using multiple machines to download web pages in parallel. The coordinator/agent model consists of multiple agent machines to collect web pages and a single coordinator machine to manage them. The parallel web crawler consists of three components: a crawling module for collecting web pages, a converting module for transforming the web pages into a database-friendly format, a ranking module for rating web pages based on their relative importance. We explain each component of the parallel web crawler and implementation methods in detail. Finally, we conduct extensive experiments to analyze the effectiveness of the parallel web crawler. The experimental results clarify the merit of our architecture in that the proposed parallel web crawler is scalable to the number of web pages to crawl and the number of machines used.