• Title/Summary/Keyword: parallel vector and tensor fields

Search Result 3, Processing Time 0.017 seconds

Second Order Parallel Tensor on Almost Kenmotsu Manifolds

  • Venkatesha, Venkatesha;Naik, Devaraja Mallesha;Vanli, Aysel-Turgut
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.191-203
    • /
    • 2021
  • Let M be an almost Kenmotsu manifold of dimension 2n + 1 having non-vanishing ��-sectional curvature such that trℓ > -2n - 2. We prove that any second order parallel tensor on M is a constant multiple of the associated metric tensor and obtained some consequences of this. Vector fields keeping curvature tensor invariant are characterized on M.

LIGHTLIKE HYPERSURFACES OF INDEFINITE KAEHLER MANIFOLDS OF QUASI-CONSTANT CURVATURES

  • Jin, Dae Ho
    • East Asian mathematical journal
    • /
    • v.30 no.5
    • /
    • pp.599-607
    • /
    • 2014
  • We study lightlike hypersurfaces M of an indefinite Kaehler manifold $\bar{M}$ of quasi-constant curvature subject to the condition that the curvature vector field of $\bar{M}$ belongs to the screen distribution S(TM). We provide several new results on such lightlike hypersurfaces M.

Jacobi Operators with Respect to the Reeb Vector Fields on Real Hypersurfaces in a Nonflat Complex Space Form

  • Ki, U-Hang;Kim, Soo Jin;Kurihara, Hiroyuki
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.541-575
    • /
    • 2016
  • Let M be a real hypersurface of a complex space form with almost contact metric structure (${\phi}$, ${\xi}$, ${\eta}$, g). In this paper, we prove that if the structure Jacobi operator $R_{\xi}= R({\cdot},{\xi}){\xi}$ is ${\phi}{\nabla}_{\xi}{\xi}$-parallel and $R_{\xi}$ commute with the structure tensor ${\phi}$, then M is a homogeneous real hypersurface of Type A provided that $TrR_{\xi}$ is constant.