• Title/Summary/Keyword: parallax

Search Result 251, Processing Time 0.033 seconds

GAIA PARALLAX ZERO POINT FROM RR LYRAE STARS

  • Gould, Andrew;Kollmeier, Juna A.
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • Like Hipparcos, Gaia is designed to give absolute parallaxes, independent of any astrophysical reference system. And indeed, Gaia's internal zero-point error for parallaxes is likely to be smaller than any individual parallax error. Nevertheless, due in part to mechanical issues of unknown origin, there are many astrophysical questions for which the parallax zero-point error ${\sigma}({\pi}_0)$ will be the fundamentally limiting constraint. These include the distance to the Large Magellanic Cloud and the Galactic Center. We show that by using the photometric parallax estimates for RR Lyrae stars (RRL) within 8kpc, via the ultra-precise infrared period-luminosity relation, one can independently determine a hyper-precise value for ${\pi}_0$. Despite their paucity relative to bright quasars, we show that RRL are competitive due to their order-of-magnitude improved parallax precision for each individual object relative to bright quasars. We show that this method is mathematically robust and well-approximated by analytic formulae over a wide range of relevant distances.

AN EMPHASIZED HIGHLIGHT MODEL OF METALLIC OBJECT ON CAVE SYSTEM IN CONSIDERATION OF CONTRAST AND PARALLAX

  • Watanabe, Yasuji;Makino, Mitsunori
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.644-648
    • /
    • 2009
  • Accurate rendering of a virtual scene in real time has been one of important issues for virtual reality (VR) technology. Specular reflection of light has been studied a long time, which is always seen on a metallic object and causes occasionally very strong brightness (highlight). Due to restriction of number of gradation of brightness (usually 256), maximum brightness and contrast ratio, the highlight is relatively weakly represented by displays and projectors. In addition, specular reflection will be take influence of binocular parallax and motion parallax, because it is light to reflect in a specific course. Therefore in this paper, an emphasized highlight model of a metallic object on the CAVE system is proposed. Decreasing brightness slightly on neighbor area of highlighted area, the proposed method increases contrast ratio between the highlighted area and neighbor area. Furthermore, using features of CAVE, the proposed method also represents glance (blink). When a metallic object moves, the method alternatively represents images with highlight and without highlight for both eyes. Since the difference of images for both eyes influences binocular parallax and motion parallax, a userfeels glance more realistically.

  • PDF

Study of the Parallax Error of a Robotic Camera for Obtaining Ultrahigh-resolution Gigapixel Digital Images (초고해상도의 기가픽셀 디지털이미지 획득을 위한 로봇 카메라의 시차연구)

  • Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.1
    • /
    • pp.26-30
    • /
    • 2020
  • First, if we want to design and construct a robotic camera, we need to understand the parallax errors between adjacent images, caused by rotation and movement of the robotic camera system. In this paper, we try to derive the mathematical formulation of parallax error and connect it to a conventional lens system, to obtain a useful, generalized, analytic algebraic expression for the parallax error. Utilizing this expression, we can structurally design a robotic camera, and study the Google ART camera as an example of a robotic camera.

PARALLAX ADJUSTMENT FOR REALISTIC 3D STEREO VIEWING OF A SINGLE REMOTE SENSING IMAGE

  • Kim, Hye-Jin;Choi, Jae-Wan;Chang, An-Jin;Yu, Ki-Yun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.452-455
    • /
    • 2007
  • 3D stereoscopic viewing of large scale imagery, such as aerial photography and satellite images, needs different parallaxes relative to the display scale. For example, when a viewer sees a stereoscopic image of aerial photography, the optimal parallax of its zoom-in image should be smaller than that of its zoom-out. Therefore, relative parallax adjustment according to the display scale is required. Merely adjusting the spacing between stereo images is not appropriate because the depths of the whole image are either exaggerated or reduced entirely. This paper focuses on the improving stereoscopic viewing with a single remote sensing image and a digital surface model (DSM). We present the parallax adjustment technique to maximize the 3D realistic effect and the visual comfort. For remote sensing data, DSM height value can be regarded as disparity. There are two possible kinds of methods to adjust the relative parallax with a single image performance. One is the DSM compression technique: the other is an adjustment of the distance between the original image and its stereo-mate. In our approach, we carried out a test to evaluate the optimal distance between a single remote sensing image and its stereo-mate, relative to the viewing scale. Several synthetic stereo-mates according to certain viewing scale were created using a parallel projection model and their anaglyphs were estimated visually. The occlusion of the synthetic stereo-mate was restored by the inpainting method using the fields of experts (FoE) model. With the experiments using QuickBird imagery, we could obtain stereoscopic images with optimized parallax at varied display scales.

  • PDF

Development of Mobile-type Full Parallax 3D Display using High-Density Directional Images

  • Tsuboi, Masashi;Takaki, Yasuhiro;Horikoshi, Tsutomu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1729-1732
    • /
    • 2007
  • We introduce a mobile-type 3D display that achieves a full directional motion parallax and the real time interactions between the observer and the 3D image at the same time. These effects can be unique specified to the mobile-type 3D display.

  • PDF

Stereoscopic Image Conversion Algorithm using Object Segmentation and Motion Parallax (객체 분할과 운동 시차를 이용한 입체 영상 변환 알고리즘)

  • Jung, Jae-Sung;Cho, Hwa-Hyun;Yoon, Jong-Ho;Choi, Myung-Ryul
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1129-1132
    • /
    • 2005
  • In this paper, we proposed real-time stereoscopic image conversion algorithm using object segmentation and motion parallax. The proposed algorithm separates objects using luminance of image, extracts moving object among objects of the image using motion parallax and generates depth map. Parallax process is done based on the depth map. The proposed method has been evaluated using visual test and APD(Absolute Parallx Difference) for comparing the stereoscopic image of the proposed method with that of MTD. The proposed method offers realistic stereoscopic conversion effect regardless of the direction and velocity of the 2-D image.

  • PDF

Study on Viewpoint Estimation for Moving Parallax Barrier 3D Display (이동형 패럴랙스 배리어 방식의 모바일 3D 디스플레이를 위한 시역계측기술에 관한 연구)

  • Kim, Gi-Seok;Cho, Jae-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.7-12
    • /
    • 2012
  • In this paper, we present an effective viewpoint estimation algorithm for the Moving parallax barrier method of 3D display mobile device. Moving parallax barrier is designed to overcome the biggest problem, the limited view angle. To accomplish it, the position of the viewer's eyes or face should be estimated with strong stability and no latency. We focus on these requirements in the poor performance of mobile processors. We used a pre-processing algorithm in order to overcome the various illumination changes. And, we combined the conventional Viola-Jones face detection method and Optical-flow algorithm for robust and stable viewpoint estimation. Various computer simulations prove the effectiveness of the proposed method.

STEREOSCOPIC EYE-TRACKING SYSTEM BASED ON A MOVING PARALLAX BARRIER

  • Chae, Ho-Byung;Lee, Gang-Sung;Lee, Seung-Hyun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.189-192
    • /
    • 2009
  • We present a novel head tracking system for stereoscopic displays that ensures the viewer has a high degree of movement. The tracker is capable of segmenting the viewer from background objects using their relative distance. A depth camera is used to generate a key signal for head tracking application. A method of the moving parallax barrier is also introduced to supplement a disadvantage of the fixed parallax barrier that provides observation at the specific locations.

  • PDF

Wang Tile Terrain Synthesis and Real-Time Rendering using Parallax Mapping (왕(Wang) 타일 지형 합성과 시차 맵핑을 이용한 실시간 렌더링)

  • Jeong, Jae-Won;Choi, Min-Gyu
    • Journal of Korea Game Society
    • /
    • v.8 no.1
    • /
    • pp.71-77
    • /
    • 2008
  • The geometric structure constructs terrain from height map and non-periodically tiling with Wang tile for the detail description. It will be able to express detail bump using parallax mapping to add decal data together with height data in tile. We solve the problem when the real-time rendering and propose improving of parallax mapping for the terrain.

  • PDF

Super-multiview windshield display for driving assistance

  • Urano, Yohei;Kashiwada, Shinji;Ando, Hiroshi;Nakamura, Koji;Takaki, Yasuhiro
    • Journal of Information Display
    • /
    • v.12 no.1
    • /
    • pp.43-46
    • /
    • 2011
  • A three-dimensional windshield display (3D-WSD) can present driving information at the same depth as the objects in the outside scene. Herein, a super-multiview 3D-WSD is proposed because the super-multiview display technique provides smooth motion parallax. Motion parallax is the only physiological cue for perceiving the depth of a 3D image displayed at a far distance, which cannot be perceived by vergence and binocular parallax. A prototype system with 36 views was constructed, and the discontinuity of motion parallax and accuracy of depth perception were evaluated.