• 제목/요약/키워드: para-Kenmotsu manifolds

검색결과 7건 처리시간 0.024초

𝜂-RICCI SOLITONS ON PARA-KENMOTSU MANIFOLDS WITH SOME CURVATURE CONDITIONS

  • Mondal, Ashis
    • Korean Journal of Mathematics
    • /
    • 제29권4호
    • /
    • pp.705-714
    • /
    • 2021
  • In the present paper, we study 𝜂-Ricci solitons on para-Kenmotsu manifolds with Codazzi type of the Ricci tensor. We study 𝜂-Ricci solitons on para-Kenmotsu manifolds with cyclic parallel Ricci tensor. We also study 𝜂-Ricci solitons on 𝜑-conformally semi-symmetric, 𝜑-Ricci symmetric and conformally Ricci semi-symmetric para-Kenmotsu manifolds. Finally, we construct an example of a three-dimensional para-Kenmotsu manifold which admits 𝜂-Ricci solitons.

A NOTE ON EINSTEIN-LIKE PARA-KENMOTSU MANIFOLDS

  • Prasad, Rajendra;Verma, Sandeep Kumar;Kumar, Sumeet
    • 호남수학학술지
    • /
    • 제41권4호
    • /
    • pp.669-682
    • /
    • 2019
  • The objective of this paper is to introduce and study Einstein-like para-Kenmotsu manifolds. For a para-Kenmotsu manifold to be Einstein-like, a necessary and sufficient condition in terms of its curvature tensor is obtained. We also obtain the scalar curvature of an Einstein-like para-Kenmotsu manifold. A necessary and sufficient condition for an almost para-contact metric hypersurface of a locally product Riemannian manifold to be para-Kenmotsu is derived and it is shown that the para-Kenmotsu hypersurface of a locally product Riemannian manifold of almost constant curvature is always Einstein.

THREE-DIMENSIONAL LORENTZIAN PARA-KENMOTSU MANIFOLDS AND YAMABE SOLITONS

  • Pankaj, Pankaj;Chaubey, Sudhakar K.;Prasad, Rajendra
    • 호남수학학술지
    • /
    • 제43권4호
    • /
    • pp.613-626
    • /
    • 2021
  • The aim of the present work is to study the properties of three-dimensional Lorentzian para-Kenmotsu manifolds equipped with a Yamabe soliton. It is proved that every three-dimensional Lorentzian para-Kenmotsu manifold is Ricci semi-symmetric if and only if it is Einstein. Also, if the metric of a three-dimensional semi-symmetric Lorentzian para-Kenmotsu manifold is a Yamabe soliton, then the soliton is shrinking and the flow vector field is Killing. We also study the properties of three-dimensional Ricci symmetric and 𝜂-parallel Lorentzian para-Kenmotsu manifolds with Yamabe solitons. Finally, we give a non-trivial example of three-dimensional Lorentzian para-Kenmotsu manifold.

CERTAIN RESULTS ON INVARIANT SUBMANIFOLDS OF PARA-KENMOTSU MANIFOLDS

  • Atceken, Mehmet
    • 호남수학학술지
    • /
    • 제43권1호
    • /
    • pp.35-46
    • /
    • 2021
  • The purpose of this paper is to study invariant pseudoparallel, Ricci generalized pseudoparallel and 2-Ricci generalized pseudoparallel submanifold of a para-Kenmotsu manifold and I obtained some equivalent conditions of invariant submanifolds of para-Kenmotsu manifolds under some conditions which the submanifolds are totally geodesic. Finally, a non-trivial example of invariant submanifold of paracontact metric manifold is constructed in order to illustrate our results.

SOME RESULTS ON INVARINAT SUBMANIFOLDS OF LORENTZIAN PARA-KENMOTSU MANIFOLDS

  • Atceken, Mehmet
    • Korean Journal of Mathematics
    • /
    • 제30권1호
    • /
    • pp.175-185
    • /
    • 2022
  • The purpose of this paper is to study invariant submanifolds of a Lorentzian para Kenmotsu manifold. We obtain the necessary and sufficient conditions for an invariant submanifold of a Lorentzian para Kenmotsu manifold to be totally geodesic. Finally, a non-trivial example is built in order to verify our main results.

Curvature Properties of 𝜂-Ricci Solitons on Para-Kenmotsu Manifolds

  • Singh, Abhishek;Kishor, Shyam
    • Kyungpook Mathematical Journal
    • /
    • 제59권1호
    • /
    • pp.149-161
    • /
    • 2019
  • In the present paper, we study curvature properties of ${\eta}$-Ricci solitons on para-Kenmotsu manifolds. We obtain some results of ${\eta}$-Ricci solitons on para-Kenmotsu manifolds satisfying $R({\xi},X).C=0$, $R({\xi},X).{\tilde{M}}=0$, $R({\xi},X).P=0$, $R({\xi},X).{\tilde{C}}=0$ and $R({\xi},X).H=0$, where $C,\;{\tilde{M}},\;P,\;{\tilde{C}}$ and H are a quasi-conformal curvature tensor, a M-projective curvature tensor, a pseudo-projective curvature tensor, and a concircular curvature tensor and conharmonic curvature tensor, respectively.