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CERTAIN RESULTS ON INVARIANT SUBMANIFOLDS OF

PARA-KENMOTSU MANIFOLDS

Mehmet Atçeken

Abstract. The purpose of this paper is to study invariant pseudoparal-

lel, Ricci generalized pseudoparallel and 2-Ricci generalized pseudoparal-
lel submanifold of a para-Kenmotsu manifold and I obtained some equiv-

alent conditions of invariant submanifolds of para-Kenmotsu manifolds
under some conditions which the submanifolds are totally geodesic. Fi-

nally, a non-trivial example of invariant submanifold of paracontact met-

ric manifold is constructed in order to illustrate our results.

1. Introduction

The geometry of almost paracontact manifolds is a natural counterpart of
the almost para-Hermitian geometry. The study of almost paracontact metric
manifolds started in [6]. A systematic study of almost paracontact metric man-
ifolds was considered by Zamkovoy[7]. Almost paracontact metric manifolds
have been extensively studied under several points of view in[6, 7, 8, 9, 10, 11,
13].

Many geometers studied paracontact metric manifolds and researched some
important properties of these manifolds. The geometry of paracontact metric
manifolds can be related to the theory of Legendre foliations. In [8], authors in-
troduced the class of paracontact metric manifolds for which the characteristic
vector field ξ belongs to the (κ, µ)-nullity condition for some real constants κ
and µ. Such manifolds are also known as (κ, µ)-paracontact metric manifolds.

The study of submanifolds of a paracontact metric manifold is a topic of
interest in differential geometry. According to the behaviour of the tangent
bundle of a submanifold with respect to action of the paracontact structure φ
of the ambient manifold, there are two well known classes of submanifolds such
as invariant and anti-invariant.
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Also, invariant submanifolds are used to discuss properties of non-linear
antronomous systems. Also totally geodesic submanifolds play an important
role in the relativity theory even though they are simplest submanifolds.

Pseudoparallel submanifolds have been studied intensively by many geometers[1,
2, 4, 5].

Motivated by the above studies, in this paper, we are deal with an invariant
submanifold of a para-Kenmotsu manifold which have not been attempted so
far. Also, we give some characterizations of an invariant submanifold to be
totally geodesic.

2. Preliminaries

A (2n+1)-dimensional smooth manifold M̃2n+1 has an almost paracontact
structure (φ, ξ, η, g) if it admits a tensor field φ of type (1, 1), a vector field
ξ, a 1-form η and a semi-Riemannian metric tensor g satisfying the following
conditions;

φ2X = X − η(X)ξ, η(ξ) = 1, φξ = η ◦ φ = 0(1)

g(φX,φY ) = −g(X,Y ) + η(X)η(Y ), η(X) = g(X, ξ)(2)

and

dη(X,Y ) = g(X,φY ),(3)

for all vector fields X,Y on M̃2n+1.

An almost paracontact metric manifold M̃2n+1(φ, ξ, η, g) is said to be para-

Kenmotsu manifold if the Levi-Civita connection ∇̃ of g satisfies

(∇̃Xφ)Y = g(φX, Y )ξ − η(Y )φX,(4)

for all X,Y ∈ Γ(TM̃), where Γ(TM̃) denote the set of all differentiable vector

fields on M̃2n+1[16].
From (1) and (4), we have

∇̃Xξ = φ2X = X − η(X)ξ.(5)

In a para-Kenmotsu M̃2n+1(φ, ξ, η, g), we have the following formulas.

R̃(X,Y )ξ = η(X)Y − η(Y )X(6)

R̃(ξ,X)Y = η(Y )X − g(X,Y )ξ(7)

S(ξ,X) = −2nη(X),(8)

for any vector fields X,Y ∈ Γ(M̃), where R̃ and S denote the Riemannian

cuvature tensor and Ricci tensor of M̃2n+1, respectively.
Now, let M be an immersed submanifold of a paracontact metric manifold

M̃2n+1. By Γ(TM) and Γ(T⊥M), we denote the tangent and normal subspaces
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of M in M̃ . Then the Gauss and Weingarten formulae are, respectively, given
by

∇̃XY = ∇XY + σ(X,Y ),(9)

and

∇̃XV = −AVX +∇⊥
XV,(10)

for all X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M), where ∇ and ∇⊥ are the connections
on M and Γ(T⊥M) and σ and A are called the second fundamental form and
shape operator of M , respectively. They are related by

g(AVX,Y ) = g(σ(X,Y ), V ).(11)

The covariant derivative of σ is defined by

(∇̃Xσ)(Y, Z) = ∇⊥
Xσ(Y, Z)− σ(∇XY, Z)− σ(Y,∇XZ),(12)

for all X,Y, Z ∈ Γ(TM). If ∇̃σ = 0, then submanifold M is said to be its
second fundamental form is parallel.

By R, we denote the Riemannian curvature tensor of M , we have the fol-
lowing Gauss equation;

R̃(X,Y )Z = R(X,Y )Z +Aσ(X,Z)Y −Aσ(Y,Z)X + (∇̃Xσ)(Y, Z)

− (∇̃Y σ)(X,Z),(13)

for all X,Y, Z ∈ Γ(TM̃), where if (∇̃Xσ)(Y, Z)− (∇̃Y σ)(X,Z) = 0, then sub-
manifold is called curvature-invariant submanifold.

For a (0, k)-type tensor field T , k ≥ 1 and a (0, 2)-type tensor field A on a
Riemannian manifold (M, g), Q(A, T )-tensor field is defined by

Q(A, T )(X1, X2, ..., Xk;X,Y ) = −T ((XΛAY )X1, X2, ..., Xk)...

− T (X1, X2, ...Xk−1, (XΛAY )Xk), ,(14)

for all X1, X2, ..., Xk, X, Y ∈ Γ(TM), where

(X ∧A Y )Z = A(Y, Z)X −A(X,Z)Y.(15)

Definition 2.1. A submanifold of a Riemannian manifold (M, g) is said
to be pseudoparallel, 2-pseudoparallel, Ricci-generalized pseudoparallel and 2-
Ricci-generalized pseudoparallel if

R̃ · σ and Q(g, σ)

R̃ · ∇̃σ and Q(g, ∇̃σ)
R̃ · σ and Q(S, σ)

R̃ · ∇̃σ and Q(S, ∇̃σ)

are linearly dependent, respectively.
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Equivalently, these can be formulated by the following equations;

R̃ · σ = L1Q(g, σ),(16)

R̃ · ∇̃σ = L2Q(g, ∇̃σ),(17)

R̃ · σ = L3Q(S, σ),(18)

R̃ · ∇̃σ = L4Q(S, ∇̃σ),(19)

where functions L1, L2, L3 and L4 are, respectively, defined on

M1 = {x ∈M : σ(x) ̸= g(x)}, M2 = {x ∈M : ∇̃σ(x) ̸= g(x)}, M3 = {x ∈M :

S(x) ̸= σ(x)} and M4 = {x ∈M : S(x) ̸= ∇̃σ(x)}.

Particularly, if L1 = 0, then submanifold is said to be semiparallel, if L2 = 0,
submanifold is said to be 2-semiparallel.

3. Certain Results on Invarinat Submanifolds of Para Kenmotsu
Manifolds

Now, we will investigate the above cases for the invariant submanifold M

of a para-Kenmotsu manifold M̃2n+1(φ, ξ, η, g).

Now, let M be an immersed submanifold of a para-Kenmotsu manifold

manifold M̃2n+1(φ, ξ, η, g). If φ(TxM) ⊆ TxM , for each point at x ∈ M , then
M is said to be invariant submanifold. We note that all of the properties of an
invariant submanifold inherit the ambient manifold.

In the rest of this paper, we will assume that M is invariant submanifold of

a para Kenmotsu manifold M̃2n+1(φ, ξ, η, g). Thus by using (4), (9), (10) and
(11) we have

σ(X, ξ) = 0, σ(φX, Y ) = σ(X,φY ) = φσ(X,Y ),(20)

and

∇Xξ = X − η(X)ξ,(21)

for all X,Y ∈ Γ(TM).

Lemma 3.1. LetM be an invariant submanifold of a para Kenmotsu man-

ifold M̃2n+1(φ, ξ, η, g). The second fundamental form σ of M is parallel if and
only if M is totally geodesic.

Proof. Let us assume that σ is parallel. Then (12) yields to

(∇̃Xσ)(Y, Z) = ∇⊥
Xσ(Y, Z)− σ(∇XY, Z)− σ(Y,∇XZ) = 0,

for all X,Y, Z ∈ Γ(TM). Here, taking Z = ξ, by virtue of (4), (20) and (21),
we can verify

−σ(∇XY, ξ) + σ(Y,∇Xξ) = σ(Y,X − η(X)ξ) = σ(Y,X) = 0
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This proves our assertion. The converse is obvious.

Lemma 3.1 is important for later theorems and corollaries.

Theorem 3.2. Let M be an invariant pseudoparallel submanifold of a

para-Kenmotsu manifold M̃2n+1(φ, ξ, η, g). Then M is either totally geodesic
or L1 = −1.

Proof. Let M be pseudoparallel, then from (16) we have

(R̃(X,Y ) · σ)(U, V ) = L1Q(g, σ)(U, V ;X,Y ),

for all X,Y, U, V ∈ Γ(TM). Taking into account of (13) and (20), this leads to

R⊥(X,Y )σ(U, V ) − σ(R(X,Y )U, V )− σ(U,R(X,Y )V )

= −L1{σ((X ∧g Y )U, V ) + σ(U, (X ∧g Y )V )}
= −L1{σ(g(Y, U)X − g(X,U)Y, V )

+ σ(U, g(Y, V )X − g(X,V )Y )}(22)

for all X,Y, U, V ∈ Γ(TM). Taking V = ξ in (22) and taking into account of
(6), (7) and (20), we obtain

σ(R(X,Y )ξ, U) = L1{η(Y )σ(X,U)− η(X)σ(U, Y )}
σ(η(X)Y − η(Y )X,U) = L1{η(Y )σ(X,U)− η(X)σ(U, Y )}

This completes the proof.

From the Theorem 3.2, we have the following corollary.

Corollary 3.3. Let M be an invariant pseudoparallel submanifold of a

para-Kenmotsu manifold M̃2n+1(φ, ξ, η, g). Then M is semiparallel if and only
if M is totally geodesic.

Theorem 3.4. Let M be an invariant 2-pseudoparallel submanifold of a

para Kenmotsu manifold M̃2n+1(φ, ξ, η, g). Then M is either totally geodesic
or L2 = −1.

Proof. LetM be 2-pseudoparallel of a para Kenmotsu manifold M̃2n+1(φ, ξ, η, g).
Then from (17), we have

(R̃(X,Y ) · ∇̃σ)(U, V, Z) = L2Q(g, ∇̃σ)(U, V, Z;X,Y ),

for all X,Y, U, V, Z ∈ Γ(TM). Also, making use use of (15), we have

R⊥(X,Y )(∇̃Uσ)(V, Z)− (∇̃R(X,Y )Uσ)(V, Z)− (∇̃Uσ)(R(X,Y )V, Z)

− (∇̃Uσ)(V,R(X,Y )Z) = −L2{(∇̃(X∧gY )Uσ)(V, Z) + (∇̃Uσ)((X ∧g Y )V, Z)

+ (∇̃Uσ)(V, (X ∧g Y )Z)},
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that is,

R⊥(X,Y )(∇̃Uσ)(V, Z)− (∇̃R(X,Y )Uσ)(V, Z)− (∇̃Uσ)(R(X,Y )V, Z)

− (∇̃Uσ)(V,R(X,Y )Z) = −L2{g(Y, U)(∇̃Xσ)(V, Z)− g(X,U)(∇̃Y σ)(V, Z)

+ (∇̃Uσ)(g(Y, V )X − g(X,V )Y, Z) + (∇̃Uσ)(V, g(Y, Z)X − g(X,Z)Y )}.

In the last equality, taking X = Z = ξ and the necessary arrangements are
made, we obtain

R⊥(ξ, Y )(∇̃Uσ)(V, ξ) − (∇̃R(ξ,Y )Uσ)(V, ξ)− (∇̃Uσ)(R(ξ, Y )V, ξ)

− (∇̃Uσ)(V,R(ξ, Y )ξ) = −L2{g(Y, U)(∇̃ξσ)(V, ξ)

− η(U)(∇̃Y σ)(V, ξ) + (∇̃Uσ)(g(Y, V )ξ − η(V )Y, ξ)

+ (∇̃Uσ)(V, η(Y )ξ − Y )}.(23)

Now, let us calculate each of these expressions. Making use of (4), (12) and
(20), we obtain

R⊥(ξ, Y )(∇̃Uσ)(V, ξ) = R⊥(ξ, Y ){∇⊥
Uσ(V, ξ)− σ(∇UV, ξ)− σ(V,∇Uξ)}

= R⊥(ξ, Y ){−σ(V,∇Uξ)}
= −R⊥(ξ, Y )σ(V,U − η(U)ξ)

= −R⊥(ξ, Y )σ(V,U).(24)

Moreover, taking into account of (4) and (20), we have

(∇̃R(ξ,Y )Uσ)(V, ξ) = ∇⊥
R(ξ,Y )Uσ(V, ξ)− σ(∇R(ξ,Y )UV, ξ)

− σ(∇R(ξ,Y )Uξ, V )

= −σ(R(ξ, Y )U − η(R(ξ, Y )U)ξ, V )

= −σ(R(ξ, Y )U, V ) = −σ(η(U)Y − g(U, Y )ξ, V ).

= −η(U)σ(Y, V ).(25)

(∇̃Uσ)(R(ξ, Y )V, ξ) = ∇⊥
Uσ(R(ξ, Y )V, ξ)− σ(∇UR(ξ, Y )V, ξ)

− σ(R(ξ, Y )V,∇Uξ)

= −σ(η(V )Y − g(Y, V )ξ, U − η(U)ξ)

= −η(V )σ(Y, U).(26)

(∇̃Uσ)(V,R(ξ, Y )ξ) = (∇̃Uσ)(V, Y − η(Y )ξ)

= (∇̃Uσ)(V, Y )− (∇̃Uσ)(V, η(Y )ξ)

= (∇̃Uσ)(V, Y )−∇⊥
Uσ(V, η(Y )ξ)

+ σ(∇UV, η(Y )ξ) + σ(V,∇Uη(Y )ξ)

= (∇̃Uσ)(V, Y ) + σ(V,Uη(Y )ξ + η(Y )∇Uξ)

= (∇̃Uσ)(V, Y ) + η(Y )σ(V,U).(27)
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(∇̃(ξ∧gY )Uσ)(V, ξ) = ∇⊥
(ξ∧gY )Uσ(V, ξ)− σ(∇(ξ∧gY )UV, ξ)

− σ(V,∇(ξ∧gY )Uξ) = −σ(V,∇g(Y,U)ξ−η(U)Y ξ)

= −σ(V, g(Y, U)ξ − η(U)Y − η(g(Y, U)ξ − η(U)Y )ξ)

= η(U)σ(V, Y ).(28)

(∇̃Uσ)((ξ ∧g Y )V, ξ) = ∇⊥
Uσ((ξ ∧g Y )V, ξ)− σ(∇U (ξ ∧g Y )V, ξ)

− σ((ξ ∧g Y )V,∇Uξ)

= −σ(g(Y, V )ξ − η(V )Y, U − η(U)ξ)

= η(V )σ(Y, U).(29)

(∇̃Uσ)(V, (ξ ∧g Y )ξ) = (∇̃Uσ)(V, η(Y )ξ − Y )

= (∇̃Uσ)(V, η(Y )ξ)− (∇̃Uσ)(V, Y )

= ∇⊥
Uσ(V, η(Y )ξ)− σ(∇UV, η(Y )ξ)

− σ(V,∇Uη(Y )ξ)− (∇̃Uσ)(V, Y )

= −σ(V,Uη(Y )ξ + η(Y )∇Uξ)− (∇̃Uσ)(V, Y )

= −η(Y )σ(V,U − η(U)ξ)− (∇̃Uσ)(V, Y )

= −η(Y )σ(V,U)− (∇̃Uσ)(V, Y ).(30)

Consequently, if we put (24), (25), (26), (27), (28), (29) and (30) in (23), we
reach at

− R⊥(ξ, Y )σ(V,U) + η(U)σ(Y, V ) + η(V )σ(Y, U)− (∇̃Uσ)(V, Y )

− η(Y )σ(U, V ) = −L2{η(U)σ(V, Y ) + η(V )σ(Y, U)− η(Y )σ(V,U)

− (∇̃Uσ)(V, Y )}(31)

If ξ is taken of V at (31), considering (20) and (5), we get

σ(Y, U)− (∇̃Uσ)(Y, ξ) = −L2{σ(U, Y )− (∇̃Uσ)(Y, ξ)},(32)

where

(∇̃Uσ)(ξ, Y ) = ∇⊥
Uσ(Y, ξ)− σ(∇UY, ξ)− σ(Y,∇Uξ)

= −σ(Y, U).(33)

From (32) and (33), we conclude that

L2{σ(U, Y )} = −σ(U, Y )

which is proves our assertions.

From Theorem 3.4, we have the following corollary.

Corollary 3.5. LetM be an invariant pseudoparallel submanifold of a para

Kenmotsu manifold M̃2n+1(φ, ξ, η, g). Then M is 2-semiparallel if and only if
M is totally geodesic.
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Theorem 3.6. LetM be an invariant Ricci-generalized pseudoparallel sub-

manifold of a para Kenmotsu manifold M̃2n+1(φ, ξ, η, g). Then M is either
totally geodesic or the function L3 = 1

2n .

Proof. If M is Ricci-generalized pseudoparallel of para Kenmotsu manifold

M̃(φ, ξ, η, g), then from (14) and (18), we have

(R̃(X,Y ) · σ)(U, V ) = L3Q(S, σ)(U, V ;X,Y )

= −L3 {σ((X ∧S Y )U, V ) + σ(U, (X ∧S Y )V )} ,
for all X,Y, U, V ∈ Γ(TM). This means that

R⊥(X,Y )σ(U, V ) − σ(R(X,Y )U, V )− σ(U,R(X,Y )V )

= −L3{σ(S(Y, U)X − S(X,U)Y, V )

+ σ(S(V, Y )X − S(X,V )Y, U)}.
Here taking X = V = ξ and by using (8) and (20), we reach at

R⊥(ξ, Y )σ(U, ξ) − σ(R(ξ, Y )U, ξ)− σ(U,R(ξ, Y )ξ)

= −L3{σ(S(Y, U)ξ − S(ξ, U)Y, ξ)

+ σ(S(ξ, Y )ξ − S(ξ, ξ)Y, U)}.(34)

By using (8) and (20), (34) reduces

−σ(U, Y − η(Y )ξ) = −L3{−S(ξ, ξ)σ(Y, U)}
−σ(Y, U) = −2nL3σ(Y, U)

This proves our assertion.

Theorem 3.7. Let M be an invariant 2-Ricci-generalized pseudoparallel

submanifold of a para Kenmotsu manifold M̃2n+1(φ, ξ, η, g). Then M is either
totally geodesic or L4 = 1

2n .

Proof. Let us assume that M is 2-Ricci-generalized pseudoparallel subman-
ifold. Then from (19), we have

(R̃(X,Y ) · ∇̃σ)(U, V, Z) = L4Q(S, ∇̃σ)(U, V, Z;X,Y ),

for all X,Y, U, V, Z ∈ Γ(TM). This implies that

R⊥(X,Y )(∇̃Uσ)(V, Z) − (∇̃R(X,Y )Uσ)(V, Z)− (∇̃Uσ)(R(X,Y )V, Z)

− (∇̃Uσ)(V,R(X,Y )Z) = −L4{(∇̃(X∧SY )Uσ)(V, Z)

+ (∇̃Uσ)((X ∧S Y )V, Z) + (∇̃Uσ)(V, (X ∧S Y )Z)}.
Here taking X = V = ξ, we have

R⊥(ξ, Y )(∇̃Uσ)(ξ, Z) − (∇̃R(ξ,Y )Uσ)(ξ, Z)− (∇̃Uσ)(R(ξ, Y )ξ, Z)

− (∇̃Uσ)(ξ,R(ξ, Y )Z) = −L4{(∇̃(ξ∧SY )Uσ)(ξ, Z)

+ (∇̃Uσ)((ξ ∧S Y )ξ, Z) + (∇̃Uσ)(ξ, (ξ ∧S Y )Z)}.(35)



Certain Results on Invariant Submanifolds of Para-Kenmotsu Manifolds 43

Now, let’s calculate each of these expressions. Also taking into account of (4)
and (20), we arrive at

R⊥(ξ, Y )(∇̃Uσ)(ξ, Z) = R⊥(ξ, Y ){∇⊥
Uσ(ξ, Z)− σ(∇UZ, ξ)

− σ(Z,∇Uξ)} = R⊥(ξ, Y ){−σ(Z,U − η(U)ξ)}
= −R⊥(ξ, Y )σ(Z,U).(36)

On the other hand, by using (4) and (20), we have

(∇̃R(ξ,Y )Uσ)(ξ, Z) = ∇⊥
R(ξ,Y )Uσ(ξ, Z)− σ(∇R(ξ,Y )Uξ, Z)

− σ(ξ,∇R(ξ,Y )UZ)

= −σ(R(ξ, Y )U − η(R(ξ, Y )U)ξ, Z)

= −σ(η(U)Y − g(Y, U)ξ, Z) = −η(U)σ(Y, Z).(37)

(∇̃Uσ)(R(ξ, Y )ξ, Z) = (∇̃Uσ)(Y − η(Y )ξ, Z) = (∇̃Uσ)(Y, Z)

− (∇̃Uσ)(η(Y )ξ, Z) = (∇̃Uσ)(Y, Z)

− ∇⊥
Uσ(η(Y )ξ, Z) + σ(∇Uη(Y )ξ, Z)

+ σ(η(Y )ξ,∇UZ)

= (∇̃Uσ)(Y, Z) + σ(Uη(Y )ξ + η(Y )∇Uξ, Z)

= (∇̃Uσ)(Y, Z) + σ(Uη(Y )ξ + η(Y )(U − η(U)ξ), Z)

= (∇̃Uσ)(Y, Z) + η(Y )σ(U,Z).(38)

(∇̃Uσ)(ξ,R(ξ, Y )Z) = ∇⊥
Uσ(ξ,R(ξ, Y )Z)− σ(∇Uξ,R(ξ, Y )Z)

− σ(ξ,∇UR(ξ, Y )Z) = −σ(U − η(U)ξ,R(ξ, Y )Z)

= −σ(U, η(Z)Y − g(Y, Z)ξ) = −η(Z)σ(U, Y ).(39)

Now, let’s calculate the left side of (35). Making use of (4), (6) and (20), we
have

(∇̃(ξ∧SY )Uσ)(ξ, Z) = ∇⊥
(ξ∧SY )Uσ(ξ, Z)− σ(∇(ξ∧SY )Uξ, Z)

− σ(ξ,∇(ξ∧SY )UZ)

= −σ(∇S(Y,U)ξ−S(ξ,U)Y ξ, Z)

= −S(Y, U)σ(∇ξξ, Z) + S(ξ, U)σ(∇Y ξ, U)

= −2nη(U)σ(Y − η(Y )ξ, Z) = −2nη(U)σ(Y, Z).(40)
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(∇̃Uσ)((ξ ∧S Y )ξ, Z) = (∇̃Uσ)(S(Y, ξ)ξ − S(ξ, ξ)Y, Z)

= (∇̃Uσ)(2nY − 2nη(Y )ξ, Z)

= 2n{(∇̃Uσ)(Y, Z)− (∇̃Uσ)(η(Y )ξ, Z)}
= 2n{(∇̃Uσ)(Y, Z)−∇⊥

Uσ(η(Y )ξ, Z)

+ σ(∇Uη(Y )ξ, Z) + σ(η(Y )ξ,∇UZ)}
= 2n{(∇̃Uσ)(Y, Z) + σ(Uη(Y )ξ + η(Y )∇Uξ, Z)}
= 2n{(∇̃Uσ)(Y, Z) + η(Y )σ(U,Z)}(41)

Finally,

(∇̃Uσ)(ξ, (ξ ∧S Y )Z) = (∇̃Uσ)(ξ, S(Y, Z)ξ − S(ξ, Z)Y )

= (∇̃Uσ)(ξ, S(Y, Z)ξ) + 2n(∇̃Uσ)(ξ, η(Z)Y )

= ∇⊥
Uσ(ξ, S(Y, Z)ξ)− σ(∇Uξ, S(Y, Z)ξ)

− σ(ξ,∇US(Y, Z)ξ) + 2n{∇⊥
Uσ(ξ, η(Z)Y )

− σ(∇Uξ, η(Z)Y )− σ(ξ,∇Uη(Z)Y )}
= −2nη(Z)σ(U, Y ).(42)

By substituting (36), (37), (38), (39), (40), (41) and (42) into (35) we reach at

− R⊥(ξ, Y )σ(U,Z) + η(U)σ(Y, Z)− (∇̃Uσ)(Y, Z)− η(Y )σ(U,Z)

+ η(Z)σ(U, Y ) = −2nL4{−η(U)σ(Y, Z) + η(Y )σ(U,Z)

+ (∇̃Uσ)(Y, Z)− η(Z)σ(U, Y )}.(43)

Here if taking Z = ξ, then (43) reduce

−2nL4{(∇̃Uσ)(Y, ξ)− σ(U, Y )} = −(∇̃Uσ)(Y, ξ) + σ(U, Y ).

From (33), we conclude that

(2nL4 − 1)σ(U, Y ) = 0,

which proves our assertion.

Example 3.8. Let us the 5-dimensional manifold

M̃5 = {(x1, x2, x3, x4, t) : t ̸= 0},
where (xi, t) denote the coordinate of R5. Then the vector fields

e1 = t
∂

∂x1
, e2 = t

∂

∂x2
, e3 = t

∂

∂x3
, e4 = t

∂

∂x4
, e5 = −t ∂

∂t

are linearly independent at each point of M̃5. By g, we denote the semi-
Riemannian metric tensor such that
g(ei, ei) = −1, if i is even
g(ei, ei) = 1, if i is odd
g(ei, ej) =0, if i ̸= j
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Let η be the 1-form defined by η(X) = g(X, e5) for all X ∈ Γ(TM̃). Now, we
define the tensor field (1, 1)-type φ such that

φe1 = e2, φe2 = e1, φe3 = e4, φe4 = e3, φe5 = 0.

Then we can easily to see that

η(e5) = 1, φ2X = X − η(X)ξ, e5 = ξ

and
g(φX,φY ) = −g(X,Y ) + η(X)η(Y )

for all X,Y ∈ Γ(M̃), that is, the equations(1), (2) and (3) are satisfied. Thus

M̃(φ, η, ξ, g) defines an almost paracontact metric manifold. By ∇̃, we denote

the Levi-Civita connection on M̃ . Then by direct calculations, we have

[ei, e5] = ei, ∇̃eie5 = ei, 1 ≤ i ≤ 4, ∇̃eiej = 0, otherwise

Thus one can easily verified

[φ,φ](ei, ej)− 2dη(ei, ej) = 0, 1 ≤ i, j ≤ 5, ∇̃Xe5 = φ2X − η(X)ξ

This tell us that M̃(φ, η, ξ, g) is a para Kenmotsu manifold.

Now, let us a submanifolds M of M̃5(φ, η, ξ, g) defined by immersion ψ as
follows;

ψ(x1, x2, x3, x4, t) = (tx1, tx2, tx3, tx4,
1

2
t2), x1 = x3, x2 = x4.

Then the tangent space of M is spanned by the vector fields

U = e1 + e3, V = e2 + e4, ξ = e5 and φU = V,

that is, M is a 3-dimensional invariant submanifold of a para Kenmotsu man-

ifold M̃5(φ, η, ξ, g). Furthermore, we can easily to see that

∇Uξ = U, ∇V ξ = V, ∇UV = ∇V U = 0.

This tell us thatM is pseudoparallel, Ricci generalized pseudoparallel subman-

ifold because it is a totally geodesic submanifold of M̃5(φ, η, ξ, g).
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