• 제목/요약/키워드: papermaking additives

검색결과 31건 처리시간 0.022초

제지용 첨가제의 최근 개발동향 (The Trends of Recent Development in Papermaking Additives)

  • 류정용;김형진;조병묵
    • 공업화학
    • /
    • 제18권6호
    • /
    • pp.531-536
    • /
    • 2007
  • 본 총설은 최근 제지 분야에 적용되어 종이의 품질을 향상시키고 생산효율을 개선하는 등 제지산업의 경제성 향상을 이끌어 내거나 장차 이끌어낼 것으로 기대되는 새로운 제지용 첨가제를 소개하기 위하여 작성되었다. 본 총설에서는 최근 개발되어 제지 현장에 적용된 새로운 첨가제에 대한 소개뿐만 아니라 그 적용 원리, 방법, 조절 및 점검 방안과 향후 발전 방향에 대하여 논의하였다. 기본적으로 2000년대에 들어선 지난 수년 동안 제지산업의 기술개발 노력은 기 개발된 기술의 최적화를 통한 경제성 확보 및 종이 품질과 생산 효율의 개선에 집중되어 왔다. 따라서 제지용 첨가제 분야에 혁신적인 변화는 없었다고 볼 수 있으나 기술적인 측면에서 몇 가지 중요한 첨가제의 개발이 보고되었으며 이를 바탕으로 기존의 제지공정에 대한 보다 합리적인 관리가 가능하게 되었다고 할 수 있다.

Fiber-Based Papermaking Additives AKD modified micronized cellulose

  • Ozersky, Alexander
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2007년도 제32회 펄프종이기술 국제세미나
    • /
    • pp.19-32
    • /
    • 2007
  • A new generation of fiber-based papermaking chemicals were presented for the first time at the PTS Pulp Technology Symposium 2005, and then several articles were published in various magazine in Asia ("Paper Asia"), the US ("Pulp & Paper"), and Europe ("Wochenblatt fuel Papierfabrikation"). The information generated quite an interest in the paper industry. Extensive studies of these papermaking additives have been made recently, new information obtained, and the compounds have gained more recognition in the industry. The company J. Rettenmaier und Soehne developed of a group of fiber-based papermaking additives. They includ combination of fibers with sizing agents, starch, fluorochemicals, minerals, biocides and some others. This article presents in-depth study of the AKD modified micronized cellulose as an example of the fiber-based papermaking chemicals cocept. The material of the present paper is based mostly on the results of the pilot paper machine study at the Paper Research Institute PTS (Heidenau, Germany), and includes case studies from the mills, which used $ARBOCELPLUS^{(R)}-AKD$ compounds. It should be noted that the $ARBOCELPLUS^{(R)}$ compounds were not designed to replace traditional additives in paper industry. They should rather be used in those areas, where application of "normal" chemicals is especially problematic.

  • PDF

Yeast Extract: Characteristics, Production, Applications and Future Perspectives

  • Zekun Tao;Haibo Yuan;Meng Liu;Qian Liu;Siyi Zhang;Hongling Liu;Yi Jiang;Di Huang;Tengfei Wang
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권2호
    • /
    • pp.151-166
    • /
    • 2023
  • Yeast extract is a product prepared mainly from waste brewer's yeast, which is rich in nucleotides, proteins, amino acids, sugars and a variety of trace elements, and has the advantages of low production cost and abundant supply of raw material. Consequently, yeast extracts are widely used in various fields as animal feed additives, food flavoring agents and additives, cosmetic supplements, and microbial fermentation media; however, their full potential has not yet been realized. To improve understanding of current research knowledge, this review summarizes the ingredients, production technology, and applications of yeast extracts, and discusses the relationship between their properties and applications. Developmental trends and future prospects of yeast extract are also previewed, with the aim of providing a theoretical basis for the development and expansion of future applications.

Micronized Cellulose as a Paper Additive and a Carrier for Papermaking Chemicals

  • Ozersky, Alexander
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2007년도 제32회 펄프종이기술 국제세미나
    • /
    • pp.33-55
    • /
    • 2007
  • This article portrays special cellulose fibers, which are designed to be a functional additive and a carrier for papermaking chemicals. The first part of the presentation deals with the micronized $ARBOCEL^{(R)}$ cellulose fibers, which are used as a functional paper/paperboard additive. In particular as a bulk and speed aid. The detailed description of the micronized $ARBOCEL^{(R)}$ fibers, their function and effects on papermaking process and paper products are given. The second part of the study describes the concept of fiber-based papermaking chemicals. A new generation of fiber-based papermaking chemicals were presented for the first time at the PTS Pulp Technology Symposium 2005, and then several articles were published in various magazine in Asia ("Paper Asia"), the US ("Pulp & Paper"). and Europe ("Wochenblatt fuel Papierfabrikation"). The information generated quite an interest in the paper industry. Extensive studies of these papermaking additives have been made recently, new information obtained, and the compounds have gained more recognition in the industry. The company J. Rettenmaier und Soehne developed a group of fiber-based papermaking additives. They include combination of fibers with sizing agents, starch, fluorochemicals, minerals, biocides and some others. This article presents in-depth study of the AKD modified micronized cellulose as an example of the fiber-based papermaking chemicals concept. The material of the present paper is based mostly on the results of the pilot paper machine study at the Paper Research Institute PTS (Heidenau, Germany), and includes case studies from the mills, which used $ARBOCELPLUS^{(R)}-AKD$ compounds. It should be noted that the $ARBOCELPLUS^{(R)}$ compounds were not designed to replace traditional additives in paper industry. They should rather be used in those areas, where application of "normal" chemicals is especially problematic

  • PDF

첨가제를 병용한 섬유의 물리적 전처리의 효과 (Effect of Papermaking Additives on Fiber Mechanical Pretreatment)

  • 서영범;이민구;하인호;조욱연
    • 펄프종이기술
    • /
    • 제35권4호
    • /
    • pp.1-7
    • /
    • 2003
  • In this study, fiber mechanical pretreatment before refining was executed with the addition of papermaking addiditives to find synergistic effects on fiber property improvement. Three fiber furnishes (SwBKP, KOCC, and BCTMP), and five different additives (CMC, CPAM, PEO, NaOH, $Na_2O_2$) were used. It was confirmed again that fiber mechanical pretreatment using Hobart mixer was a special way to modify fiber properties, where fiber WRV (water retention value) increases without losing fiber length. For SwBKP, addition of small amount of CMC (0.2% OD basis), and for KOCC, PEO (0.2% OD basis) caused additional significant improvement of the fiber furnish properties, respectively. Other additives did not cause adverse effects on the mechanical pretreatment, or better. For BCTMP, NaOH addition followed by mechanical pretreatment caused more than 20% improvement in tensile and tear strength simultaneously, compared to the control. The yellowing caused by the treatment of NaOH on BCTMP could be minimized by using $Na_2O_2$ without losing the positive effect of NaOH.

Adsorption Kinetics for Polymeric Additives in Papermaking Aqueous Fibrous Media by UV Spectroscopic Analysis

  • Yoon, Sung-Hoon;Chai, Xin-Sheng
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권11호
    • /
    • pp.1819-1824
    • /
    • 2006
  • The general objective of the present study was to investigate the potential application of the UV spectroscopic method for determination of the polymeric additives present in papermaking fibrous stock solutions. The study also intended to establish the surface-chemical retention model associated with the adsorption kinetics of additives on fiber surfaces. Polyamide epichlorohydrin (PAE) wet strength resin and imidazolinium quaternary (IZQ) softening agents were selected to evaluate the analytical method. Concentrations of PAE and IZQ in solution were proportional to the UV absorption at 314 and 400 nm, respectively. The time-dependent behavior of polymeric additives obeyed a mono-molecular layer adsorption as characterized in Langmuir-type expression. The kinetic modeling for polymeric adsorption on fiber surfaces was based on a concept that polymeric adsorption on fiber surfaces has two distinguishable stages including initial dynamic adsorption phase and the final near-equilibrium state. The simulation model predicted not only the real-time additive adsorption behavior for polymeric additives at high accuracy once the kinetic parameters were determined, but showed a good agreement with the experimental data. The spectroscopic method examined on the PAE and IZQ adsorption study could potentially be considered as an effective tool for the wet-end retention control as applied to the paper industry.

제지공정 섬유상 원재료 및 공정 첨가제의 환경오염 부하 분석 (The Analysis of Environmental Impact Load by Fibrous Raw Materials and Wet-end Additives in Papermaking Process)

  • 김형진;신동욱
    • 펄프종이기술
    • /
    • 제37권3호
    • /
    • pp.50-58
    • /
    • 2005
  • It is generally known that paper industry is the second largest industry in the use of process water, and also have the highest environmental impact load in the contaminant sources. Paper is produced from the mixtures composed of 1% fibrous raw materials and 99% water. The optimum use of process water effects on the quality properties of paper and the environmental impact load of waste water treatment. In this research, the kinds of fibrous raw material & additives used in the paperboard production line were investigated, and the quantification of environmental loads and the environmental effects of process water on COD potential were evaluated. The NBDCODs were also analyzed from process water by the method of waste water treatment in paper mill and applied for the optimum use of recycling water, and zero effluent process. In the fibrous raw materials, KOCC caused the highest COD potentials, and sack paper & UKP was comparatively low. The NBDCOD of KOCC largely reduced after biological treatment because of easily biodegradable properties, but AOCC contained non-biodegradable materials. In chemical additives, COD was high in turns of rosin>starch>deaeration agent>dye, NBDCOD greatly reduced in starch and deaeration agent. In the case of 2 kinds of paperboard product, the COD potentials was mainly high in starch, AOCC and KOCC.

제지공정의 Scale 제어를 위한 최적조건 규명 (Estimation of Optimum Conditions for Controlling scale Problems in Papermaking Process)

  • 권오철;조병묵;오정수;홍상의
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2001년도 추계학술발표논문집
    • /
    • pp.87-94
    • /
    • 2001
  • Scale is agglomerate or thin film compounded of soluble salts in papermaking process. It causes many problems such as closing up pipelines, contaminating wire and felt, decreasing efficiency of additives and paper quality. In this study, physical factors related to forming scale in white water are determinated and optimum conditions are proposed. To control scale, ACP(Acrylacid Copolymer) was synthesized and compared with conventional chemicals such as EDTA, DTPA and STPP.

  • PDF

콜로이달 실리카에 의한 마이크로 파티클 시스템의 보류 효과 및 응집 기구 (Retention Efficiency and Flocculation Mechanism of Microparticle Systems Based on Colloidal Silica)

  • 김향수;이학래
    • 펄프종이기술
    • /
    • 제34권4호
    • /
    • pp.7-15
    • /
    • 2002
  • It is of critical importance to understand the characteristics of papermaking additives and their reaction mechanisms to fully utilize the benefits they provide. Among the papermaking additives, retention aids play critical roles in improving productivity, product quality and process economy. Diverse research efforts to understand the reaction mechanisms between cationic polymers and anionic microparticles have been made since microparticle retention systems were introduced into the market. And it is most commonly accepted that flocs formed by the addition of cationic polymers are dispersed by shear force and the broken flocs are reflocculated instantly with the addition of microparticles. There are still many unanswered questions, however, on the reaction phenomena between cationic polymers and anionic microparticles. In this study, several cationic polymers including waxy maize starch, com starch and guar gum were used to investigate their retention efficiency when they were used along with anionic colloidal silica.

제지공정 scum에서의 섬유상 원료 재이용성 평가 (Evaluation of Recyclability of Fibrous Raw Materials from Scums in Papermaking Process)

  • 강광호;김형진
    • 펄프종이기술
    • /
    • 제44권6호
    • /
    • pp.58-69
    • /
    • 2012
  • As the meaning of dictionary terminology, scum refers to a layer of impurities that accumulates at the surface of a liquid. In papermaking process, scum indicates the floated solid waste generated by a flotation process during the primary wastewater treatment. In this study, different kinds of stocks and scums collected from newspaper, liner, tissue and fine paper were analysed in details. The purpose of this study was firstly to demonstrate the composition characteristics of different sources of scum, secondly the analysis of environmental hazardous materials, and thirdly the evaluation of reutilization ability of fibrous materials from collected scum. As mentioned the meaning of solid waste, scum was actually differ from the waste sludge in sources, compositions and recycling abilities. In the same manner of waste paper, the sludge which is generated within onsite of papermaking processes would be reused as a raw material. The general compositions of scum from waste water were mainly inorganic ash materials, fine fibre fractions, recycled fibre debries, and ink particles. If the scum is able to reuse as fibrous additives in papermaking process, it could contribute to the savings of running costs in both the subsidiaries of fibrous material and the solid waste treatment with even small quantity.