• 제목/요약/키워드: paper surface strength

검색결과 1,007건 처리시간 0.025초

A SHEAR BOND STRENGTH OF RESIN CEMENTS BONDED TO PRESSABLE PORCELAIN WITH VARIOUS SURFACE TREATMENTS

  • Lee Jong-Yeop;Im Eui-Bin
    • 대한치과보철학회지
    • /
    • 제41권3호
    • /
    • pp.379-386
    • /
    • 2003
  • Statement of problem. Resin cements are widely used in adhesive dentistry specially on all ceramic restorations. It is needed to find out adequate bonding strength between different porcelain surface treatments, commercially available porcelains, and different resin cement systems. Purpose. The purpose of this study was to evaluate shear bond strength of resin cements bonded to porcelains in three different modalities; 5 different porcelain surface treatments, 3 different resin cement systems and 3 different commercially available pressable porcelains. Material and Method. This study consisted of 3 parts. Part I examined the effect of five different surface treatments on the pressable porcelain. Fifty discs (5 mm in diameter and 3 mm in height) of Authentic porcelain were randomly divided into 5 groups (n = 10). The specimens were sanded with 320 grit SiC paper followed by 600 grit SiC paper. The specimens were treated as follow: Group 1-Sandblasting (aluminum oxide) only, Group 2 - sandblasting/ silane, Group 3 - sandblasting/ acid etching/ silane, Group 4 - acid etching only, Group 5 - acid etching/ silane. Part II examined the shear bond strength of 3 different resin cement systems (Duolink, Variolink II, Rely X ARC) on acid etching/ silane treated Authentic pressable porcelain. Part 3 examined the shear bond strength of Duolink resin cement on 3 different pressable porcelains (Authentic, Empress I, Finesse). All cemented specimens were stored in distilled water for 2 hours and tested with Ultradent shear bond strength test jig under Universal Instron machine until fracture. An analysis of variance(ANOVA) test was used to evaluate differences in shear bond strength. Result. The shear bond strength test resulted in the following: (1) Acid etched porcelains recorded greater shear bond strength values to the sandblasted porcelains. (2) Silane treated porcelains recorded greater shear bond strength values to non-silane treated porcelains. (3) There was no significant difference between sandblasting/ acid etching/ silane treated and acid etching/ silane treated porcelains. However those values were much higher than other three groups. (4) The shear bond strength with Variolink II was lower than the value of Duolink or Rely X ARC. (5) The shear bond strength of Finesse was lower than the value of Authentic or Empress I.

의치상 레진치아의 표면처리에 따른 수복레진과의 결합강도에 대하여 (BOND STRENGTH OF VARIOUS RESINS TO DENTURE TEETH BY SURFACE TREATMENT)

  • 방몽숙
    • 대한치과보철학회지
    • /
    • 제37권1호
    • /
    • pp.42-50
    • /
    • 1999
  • This study investigated the effects of surface treatment for filling resins on the surface texture of denture resin teeth by the use of scanning electron microscope. This study also evaluated the bond strength of filling resins to denture resin teeth. The denture resin teeth in this study was Endura Posterio(Shofu Co., Japan). The ailing resins used were Coe-cure(Coe Co., USA), Vertex RS (Dentimax Ziest, Holland), and light cured resin Z-100(3M Co., USA). The test sample were divided into 3 parts. Group 1 : Sandblasted with $50{\mu}m$ Aluminum oxide. Group 2 : Treated with #60 silicone carbide paper Group 3 : Treated with monomer brush application. Control Group : No Treatment. The results were as follows ; 1. The bond strength of filling resins to denture resin teeth is increased by surface treatment. 2. Regardless of the filling resins, there was a significant difference with # 60 silicone carbide paper treated group. 3. Regardless of each group, the bond strength according to the filling resins were decreased in the following order: Vertex RS, Coe-cure and Z-100.

  • PDF

의치용 레진치와 수복용 복합레진 간의 결합강도에 관한 연구 (SHEAR BOND STRENGTHS BETWEEN ABRASION-RESISTANT DENTURE TEETH AND COMPOSITE RESINS)

  • 김미리;정창모;전영찬;임장섭
    • 대한치과보철학회지
    • /
    • 제40권2호
    • /
    • pp.201-212
    • /
    • 2002
  • This study investigated the shear bond strengths between abrasion-resistant denture teeth and composite resins according to surface treatments. Denture teeth for this study were Trubyte IPN teeth(Dentsply Inc., USA) with interpenetrating polymer network and Endura Posterio (Shofu Inc. Japan) of composite resin teeth, and restorative composite resins were Clearfil FII (Kuraray, Japan) of the self-cured composite resin and Z100(3M Dental Product, USA) of the light-cured composite resin. Five different surface treatments were evaluated: (1) $50{\mu}m\;A1_2O_3$ sandblasting: (2) #100 carbide paper; (3) chloroform; (4) retentive holes; and (5) no treatment. After surface treatments, denture teeth were examined by scanning electron microscopy(SEM), and the maximum shear bond strengths between abrasion-resistant denture teeth and composite resins were measured using Instron. The results were as follows; 1. IPN teeth treated with sandblasting had the highest shear bond strength, and Endura treated with sandblasting and carbide paper had significantly greater shear bond strength than with any other surface treatment. 2. Regardless or composite resins, the shear bond strength on Endura was greater than on IPN teeth. 3. Regardless of denture teeth, the shear bond strength of Clearfil FII was greater han of Z100. 4. In appearance of SEM, IPN teeth treated with sandblasting showed generalized roughness on the all of surface, however, carbide paper treatment resulted in partly rough. Endura treated with sandblasting and carbide paper showed similar surface characteristics. Wetting denture teeth surface with chloroform removed the debris and created a particle-free and smooth surface.

Formulation design of chloride-free cement additive by response surface methodology

  • Zhu, Zi-chen;Gu, Ding-cheng
    • Advances in Computational Design
    • /
    • 제1권1호
    • /
    • pp.27-35
    • /
    • 2016
  • The influences of chloride-free components of the cement additive: triethanolamine, triisopropanolamine, sodium hyposulfite and calcium gluconate on the 1d, 3d and 28d compressive strength of cement were investigated by response surface methodology. It found the early strength activators, triethanolamine and sodium hyposulfite could enhance the 1d strength of cement effectively but they did not contribute to the 3d strength enhancement, and further their interaction was able to decrease the 28d strength of cement. Calcium gluconate was not that effective for the strength enhancement on 3 and 28 days when it's simply dosed. However the interaction effect of calcium gluconate with triisopropanolamine could strongly favor the strength enhancement of cement after 3 days. Results indicated it was necessary to focus attention on the potential interactions among the chemical components. And for the concern of four chemicals studied in this paper, it was feasible to formulated a kind of chloride-free cement additive that can be effective for the early strength of cement and its the strength after 3 days.

표면 거칠기 정도가 접촉면 전단력에 미치는 영향 (The Influence of Surface Roughness on Interface Strength)

  • 이석원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.255-262
    • /
    • 1999
  • This paper summarizes the results of a study which uses the recently developed Optical Profile Microscopy technique (Dove and Frost, 1996) as the basis for investigating the role of geomembrane surface roughness on the shear strength of goomembrane/geotextile interfaces. The results show that interface friction can be quantitatively related to the surface roughness of the geomembrane. The peak and residual interface strengths increase dramatically through the use of textured geomembranes as opposed to smooth geomembranes. For the smooth geomembranes, the sliding of the geotextile is the main shear mechanism. For the textured geomembranes, the peak interface strength is mainly mobilized through the micro-texture of the geomembrane, however, the residual interface strength is primarily attributed to macro scale surface roughness which pulls out and breaks the filaments from the geotextile. The results of this study can be extended to the other interfaces such as joints in rock mass, and also can be used to provide a quantitative framework that can lead to a significantly improved basis for the selection and design of geotextiles and geomembranes in direct contact.

  • PDF

Polyvinyl Alcohol/Polyamide-epichlorohydrin 복합 지력증강제에 의한 종이 특성 향상 (Enhancement of Paper Characteristics by Polyvinyl Alcohol/Polyamide-epichlorohydrin Coating as a Complex Strength Additive)

  • 장윤재;이활종;강호종
    • 폴리머
    • /
    • 제38권5호
    • /
    • pp.620-625
    • /
    • 2014
  • Polyvinyl alcohol/polyamide-epichlorohydrin(PVA/PAE) 복합 지력증강제 처리에 따른 종이의 건조 및 습윤인장강도와 표면특성 변화를 살펴보았다. PVA/PAE 복합 지력증강제를 사용하는 경우, PVA와 PAE를 각각 첨가제로 사용하는 것에 비하여 건조 및 습윤 인장강도 증가와 함께 치수안정성이 우수해 짐을 알 수 있었으며 이는 PVA와 PAE의 물리적인 가교에 의한 결과로 해석할 수 있었다. PVA/PAE의 복합화는 PAE 지력증강제 처리에 의하여 발생하는 종이의 표면 거칠기의 증가를 최소화하며 동시에 사이징도 증가시켜 종이 인쇄 시 색농도 증가에 기여함을 알 수 있다.

SCM415 침탄치차의 굽힘피로강도평가에 관한 연구 (A Study on Evaluation of Bending Fatigue Strength in SCM415 Carburized Spur Gear)

  • 류성기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권6호
    • /
    • pp.763-770
    • /
    • 1998
  • This paper deals with evaluation of bending fatigue strength in SCM415 carburized spur gears. The constant stress amplitude fatigue test is performed by using an electrohydraulic servo-controlled pulsating tester. The S-N curves are obtained and the enhanvement of fatigue strength due to carburized treatment is clarified. In this study the improvement of fatigue strength is assumed to be caused by an increase of both hardness and residual stress and experimental formula has been proposed for the estimation of bending fatigue strength of carburized gears. The effect of surface conditions on the fatigue strength is evaluated quantitatively and it is close to the relative surface condition factor used in the ISO strength rating formula.

  • PDF

The Improvement of the Opacity and Printing Strength of Fancy Paper Overlaid Plywood

  • Kuo Lan-Sheng;Perng Yuan-Shing;Wang Eugene I-Chen;Yen Chen-Fa;Kao Tsuen-Han
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2006년도 PAN PACIFIC CONFERENCE vol.1
    • /
    • pp.91-98
    • /
    • 2006
  • The purpose of this study is to investigate the opacity and printing strength of MG paper overlaid plywood. The printing strength of ink on MG paper can be evaluated effectively by a formula $E^{*2}=[(L^{*})^{2}+(a^{*})^{2}+(b^{*})^{2}]^{1/2}$ that we proposed. Higher E value indicates good printing strength of ink-on-paper. We also assess the real color of translucent printed MG paper with a formula CIE ${\bigtriangleup}E^{*}$ (color difference between a pile of same paper to be opaque and fancy paper laminated board). In addition, the color difference on paper surface caused by the color of wood-based board (bottom) can be evaluated by a formula of Pc. No. Generally, an acceptable appearance quality of fancy boards is ${\bigtriangleup}E^{*}$ <2.0 and small Pc.No. value. The experimental results showed that Japan-made MG papers -J1, J2 and J3 have better printing strength and gloss than that of Taiwan-made paper (T1). The reason for this was that Taiwan-made paper has poor printing strength and low gloss, which might be correlated to the fiber compositions in paper. Higher printing strength can be seen for short fiber containing handsheets when comparing to that of handsheets. Nonetheless, low-freeness sheets gives better printing strength than that of high-freeness sheets. High-opacity MG paper gives good opacifying effect to the fancy paper laminated wood-based boards. Comparing the surface color of 2 kinds of fancy paper laminated boards, paperboard T1 laminated with high-opacity fancy paper showed slight color difference. The same results can be seen for $??g/m^{2}$ handsheets. Higher-opacity Acacia and Eucalyptus bleached sulfate pulps (short fiber) gives higher opacifying effect on the plywood when comparing to Northan pine and Radiata pine sulfate pulps(long fiber). The former ones also showed small color differences when comparing the color differences between the color of fancy paper and laminated paper board. Additionally, the color of bottom plywood can't be shown through for the high-opacify surface paper adhered to. Besides, the PC No of the base paper laminated board is small as well. Apparently, we can add colorants to the binders for the manufscture of various handsheets ($30g/m^{2}$) with various pulp mix ratios to increase the opacity of paperboards to certain extents. When we using yellow and brown binders in paper laminated board, the color difference between Acacia and Eucalyptus handsheets overlaid boards decreasing to 2.0 (acceptable ${\bigtriangleup}E^{*}$ <2.0, hard to discern), but not much improvement for Northern and Radiata pines. Definitely, show-through defects can be discernible for lower opacity papers. In general, admirable printing strength of fancy paper by which glued to plywood can be made with high-opacity paper and colored binders techniques.

  • PDF

Evaluating the bond strength between concrete substrate and repair mortars with full-factorial analysis

  • Felekoglu, Kamile Tosun;Felekoglu, Burcu;Tasan, A. Serdar;Felekoglu, Burak
    • Computers and Concrete
    • /
    • 제12권5호
    • /
    • pp.651-668
    • /
    • 2013
  • Concrete structures need repairing due to various reasons such as deteriorative effects, overloading, poor quality of workmanship and design failures. Cement based repair mortars are the most widely used solutions for concrete repair applications. Various factors may affect the bond strength between concrete substrate and repair mortars. In this paper, the effects of polymer additives, strength of the concrete substrate, surface roughness, surface wetness and aging on the bond between concrete substrate and repair mortar has been investigated. Full factorial experimental design is employed to investigate the main and interaction effects of these factors on the bond strength. Analysis of variance (ANOVA) under design of experiments (DOE) in Minitab 14 Statistical Software is used for the analysis. Results showed that the interaction bond strength is higher when the application surface is wet and strength of the concrete substrate is comparatively high. According to the results obtained from the analysis, the most effective repair mortar additive in terms of bonding efficiency was styrene butadiene rubber (SBR) within the investigated polymers and test conditions. This bonding ability improvement can be attributed to the self-flowing ability, high flexural strength and comparatively low air content of SBR modified repair mortars. On the other hand, styrene acrylate rubber (SAR) modified mortars was found incompatible with the concrete substrate.

추가 상재하중을 받는 지중박스구조물의 우각부에 대한 프리플렉스 부재를 이용한 보강공법 (Strength Method Using Pre-flexed Members for the Corner of Underground Box Structures under Additional Surface Load)

  • 정지승;이진혁;김기암
    • 한국안전학회지
    • /
    • 제31권5호
    • /
    • pp.102-108
    • /
    • 2016
  • This paper presents a new strength method of underground box structures under additional surface load. An L-bracing using pre-flexed steel member threads called the "Pre-flex strength method" is used to improve capacity of the RC box structure under earth pressure due to additional surface load. The pre-flexed steel member is fixed the top and bottom of the structure after chemical anchor was installed by drilling hole on the box structure. The structural performance was evaluated analytically. 3 types of underground RC box structure were used; $2.0m{\times}2.0m$, $3.0m{\times}3.0m$ and $4.0m{\times}4.0m$. For the performance evaluation, structure analysis were performed on moment and shear resisting structures with and without pre-flex strength method. Numerical results confirmed that the proposed strength member system installed on underground RC box structures enhanced the strength capacity. The feasible region of the proposed pre-flex strength method in accordance with the earth pressure due to additional surface depth was evaluated.