• Title/Summary/Keyword: paper network PageRank

Search Result 10, Processing Time 0.024 seconds

Patent citation network analysis (특허 인용 네트워크 분석)

  • Lee, Minjung;Kim, Yongdai;Jang, Woncheol
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.613-625
    • /
    • 2016
  • The development of technology has changed the world drastically. Patent data analysis helps to understand modern technology trends and predict prospective future technology. In this paper, we analyze the patent citation network using the USPTO data between 1985 and 2012 to identify technology trends. We use network centrality measures that include a PageRank algorithm to find core technologies and identify groups of technology with similar properties with statistical network models.

Importance Assessment of Multiple Microgrids Network Based on Modified PageRank Algorithm

  • Yeonwoo LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2023
  • This paper presents a comprehensive scheme for assessing the importance of multiple microgrids (MGs) network that includes distributed energy resources (DERs), renewable energy systems (RESs), and energy storage system (ESS) facilities. Due to the uncertainty of severe weather, large-scale cascading failures are inevitable in energy networks. making the assessment of the structural vulnerability of the energy network an attractive research theme. This attention has led to the identification of the importance of measuring energy nodes. In multiple MG networks, the energy nodes are regarded as one MG. This paper presents a modified PageRank algorithm to assess the importance of MGs that include multiple DERs and ESS. With the importance rank order list of the multiple MG networks, the core MG (or node) of power production and consumption can be identified. Identifying such an MG is useful in preventing cascading failures by distributing the concentration on the core node, while increasing the effective link connection of the energy flow and energy trade. This scheme can be applied to identify the most profitable MG in the energy trade market so that the deployment operation of the MG connection can be decided to increase the effectiveness of energy usages. By identifying the important MG nodes in the network, it can help improve the resilience and robustness of the power grid system against large-scale cascading failures and other unexpected events. The proposed algorithm can point out which MG node is important in the MGs power grid network and thus, it could prevent the cascading failure by distributing the important MG node's role to other MG nodes.

Analysis of the impact of mathematics education research using explainable AI (설명가능한 인공지능을 활용한 수학교육 연구의 영향력 분석)

  • Oh, Se Jun
    • The Mathematical Education
    • /
    • v.62 no.3
    • /
    • pp.435-455
    • /
    • 2023
  • This study primarily focused on the development of an Explainable Artificial Intelligence (XAI) model to discern and analyze papers with significant impact in the field of mathematics education. To achieve this, meta-information from 29 domestic and international mathematics education journals was utilized to construct a comprehensive academic research network in mathematics education. This academic network was built by integrating five sub-networks: 'paper and its citation network', 'paper and author network', 'paper and journal network', 'co-authorship network', and 'author and affiliation network'. The Random Forest machine learning model was employed to evaluate the impact of individual papers within the mathematics education research network. The SHAP, an XAI model, was used to analyze the reasons behind the AI's assessment of impactful papers. Key features identified for determining impactful papers in the field of mathematics education through the XAI included 'paper network PageRank', 'changes in citations per paper', 'total citations', 'changes in the author's h-index', and 'citations per paper of the journal'. It became evident that papers, authors, and journals play significant roles when evaluating individual papers. When analyzing and comparing domestic and international mathematics education research, variations in these discernment patterns were observed. Notably, the significance of 'co-authorship network PageRank' was emphasized in domestic mathematics education research. The XAI model proposed in this study serves as a tool for determining the impact of papers using AI, providing researchers with strategic direction when writing papers. For instance, expanding the paper network, presenting at academic conferences, and activating the author network through co-authorship were identified as major elements enhancing the impact of a paper. Based on these findings, researchers can have a clear understanding of how their work is perceived and evaluated in academia and identify the key factors influencing these evaluations. This study offers a novel approach to evaluating the impact of mathematics education papers using an explainable AI model, traditionally a process that consumed significant time and resources. This approach not only presents a new paradigm that can be applied to evaluations in various academic fields beyond mathematics education but also is expected to substantially enhance the efficiency and effectiveness of research activities.

Cancer Patient Specific Driver Gene Identification by Personalized Gene Network and PageRank (개인별 유전자 네트워크 구축 및 페이지랭크를 이용한 환자 특이적 암 유발 유전자 탐색 방법)

  • Jung, Hee Won;Park, Ji Woo;Ahn, Jae Gyoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.547-554
    • /
    • 2021
  • Cancer patients can have different kinds of cancer driver genes, and identification of these patient-specific cancer driver genes is an important step in the development of personalized cancer treatment and drug development. Several bioinformatic methods have been proposed for this purpose, but there is room for improvement in terms of accuracy. In this paper, we propose NPD (Network based Patient-specific Driver gene identification) for identifying patient-specific cancer driver genes. NPD consists of three steps, constructing a patient-specific gene network, applying the modified PageRank algorithm to assign scores to genes, and identifying cancer driver genes through a score comparison method. We applied NPD on six cancer types of TCGA data, and found that NPD showed generally higher F1 score compared to existing patient-specific cancer driver gene identification methods.

Journal PageRank Calculation in the Korean Science Citation Database (국내 인용 데이터베이스에서 저널 페이지랭크 측정 방안)

  • Lee, Jae-Yun
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.22 no.4
    • /
    • pp.361-379
    • /
    • 2011
  • This paper aims to propose the most appropriate method for calculating the journal PageRank in a domestic citation database. Korean journals show relatively high journal self-citation ratios and have many outgoing citations to external journals which are not included in the domestic citation database. Because the PageRank algorithm requires recursive calculation to converge, those two characteristics of domestic citation databases must be accounted for in order to measure the citation impact of Korean journals. Therefore, two PageRank calculation methods and four formulas for self-citation adjustment have been examined and tested for KSCD journals. The results of the correlation analysis and regression analysis show that the SCImago Journal Rank formula with the cr2 type self-citation adjustment method seems to be a more appropriate way to measure the relative impact of domestic journals in the Korean Science Citation Database.

Malware Containment Using Weight based on Incremental PageRank in Dynamic Social Networks

  • Kong, Jong-Hwan;Han, Myung-Mook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.421-433
    • /
    • 2015
  • Recently, there have been fast-growing social network services based on the Internet environment and web technology development, the prevalence of smartphones, etc. Social networks also allow the users to convey the information and news so that they have a great influence on the public opinion formed by social interaction among users as well as the spread of information. On the other hand, these social networks also serve as perfect environments for rampant malware. Malware is rapidly being spread because relationships are formed on trust among the users. In this paper, an effective patch strategy is proposed to deal with malicious worms based on social networks. A graph is formed to analyze the structure of a social network, and subgroups are formed in the graph for the distributed patch strategy. The weighted directions and activities between the nodes are taken into account to select reliable key nodes from the generated subgroups, and the Incremental PageRanking algorithm reflecting dynamic social network features (addition/deletion of users and links) is used for deriving the high influential key nodes. With the patch based on the derived key nodes, the proposed method can prevent worms from spreading over social networks.

Collaboration Networks and Document Networks in Informetrics Research from 2001 to 2011: Finding Influential Nations, Institutions, Documents (계량정보학분야의 협력연구 네트워크 및 문헌네트워크 분석 : 국가, 기관, 문헌단위 분석)

  • Lee, Jae Yun;Choi, Sanghee
    • Journal of the Korean Society for information Management
    • /
    • v.30 no.1
    • /
    • pp.179-191
    • /
    • 2013
  • Since information scientists have begun trying to quantify significant research trends in scientific publications, '-metrics' research such as 'bibliometrics', 'scientometrics', 'informetrics', 'webometrics', and 'citation analysis' have been identified as crucial areas of information science. To illustrate the dynamic research activities in these areas, this study investigated the major contributors of '-metrics' research for the last decade at three levels: nations, institutions, and documents. '-metrics' literature of this study was obtained from the Science Citation Index for the years 2001-2011. In this analysis, we used Pathfinder network, PNNC algorithm, PageRank and several indicators based on h-index. In terms of international collaborations, USA and England were identified as major countries. At the institutional level, Katholieke University, Leuven and the University of Amsterdam in Europe and Indiana University and the Office of Naval Research in the USA have led co-research projects in informetrics areas. At the document level, Hirsch's h-index paper and Ingwersen's web impact factor paper were identified as the most influential work by two methods: PageRank and single paper h-index.

A Study on Document Citation Indicators Based on Citation Network Analysis (인용 네트워크 분석에 근거한 문헌 인용 지수 연구)

  • Lee, Jae-Yun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.45 no.2
    • /
    • pp.119-143
    • /
    • 2011
  • This study identifies the characteristics of recent citation-based indicators for assessing a single paper in the context of their co-relationships. Five predefined indicators were examined with three variants of h-index which are convened in this study; the formers are PageRank, SCEAS Rank, CCI, f-value, and single paper h-index and the latters are $h_S$-index, h1-index, and $h_S$1-index. The correlation analysis and cluster analysis were performed to group the indicators by common characteristics, after which the indicators were calculated with the dataset from KSCI DB. The results show statistical evidence that distinguishes h-index type indicators from others. The characteristics of the indicators were verified with citation frequency factors using correlation analysis. Finally, the implications for applications and further studies are discussed.

Identification of Heterogeneous Prognostic Genes and Prediction of Cancer Outcome using PageRank (페이지랭크를 이용한 암환자의 이질적인 예후 유전자 식별 및 예후 예측)

  • Choi, Jonghwan;Ahn, Jaegyoon
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.61-68
    • /
    • 2018
  • The identification of genes that contribute to the prediction of prognosis in patients with cancer is one of the challenges in providing appropriate therapies. To find the prognostic genes, several classification models using gene expression data have been proposed. However, the prediction accuracy of cancer prognosis is limited due to the heterogeneity of cancer. In this paper, we integrate microarray data with biological network data using a modified PageRank algorithm to identify prognostic genes. We also predict the prognosis of patients with 6 cancer types (including breast carcinoma) using the K-Nearest Neighbor algorithm. Before we apply the modified PageRank, we separate samples by K-Means clustering to address the heterogeneity of cancer. The proposed algorithm showed better performance than traditional algorithms for prognosis. We were also able to identify cluster-specific biological processes using GO enrichment analysis.

Discipline Bias of Document Citation Impact Indicators: Analyzing Articles in Korean Citation Index (논문 인용 영향력 측정 지수의 편향성에 대한 연구: KCI 수록 논문을 대상으로)

  • Lee, Jae Yun;Choi, Sanghee
    • Journal of the Korean Society for information Management
    • /
    • v.32 no.4
    • /
    • pp.205-221
    • /
    • 2015
  • The impact of a journal is commonly used as the impact of an individual paper within that journal. It is problematic to interpret a journal's impact as a single paper's impact of the journal, so there are several researches to measure a single paper's impact with its own citation counts. This study applied 8 impact indicators to Korean Citation Index database and examined discipline bias of each indicator. Analyzed indicators are simple citation counts, PageRank, f-value, CCI, c-index, single publication h-index, single publication hs-index, and cl-index. PageRank has the least discipline bias at highly ranked papers and journal bias in a discipline. On the contrary, simple citation counts showed strongly biased results toward a certain discipline or a journal. KCI database provides only simple citation counts. It needs to show PageRank (global indicator) to discover influential papers in diverse areas. Furthermore it needs to consider to provide the best of local indicators. Local indicators can be calculated only with papers in users' search results because they uses citation counts of citing papers and the number of references. They are more efficient than global indicators which explore the whole database. KCI should also consider to provide Cl-index (local indicator).