The development of technology has changed the world drastically. Patent data analysis helps to understand modern technology trends and predict prospective future technology. In this paper, we analyze the patent citation network using the USPTO data between 1985 and 2012 to identify technology trends. We use network centrality measures that include a PageRank algorithm to find core technologies and identify groups of technology with similar properties with statistical network models.
This paper presents a comprehensive scheme for assessing the importance of multiple microgrids (MGs) network that includes distributed energy resources (DERs), renewable energy systems (RESs), and energy storage system (ESS) facilities. Due to the uncertainty of severe weather, large-scale cascading failures are inevitable in energy networks. making the assessment of the structural vulnerability of the energy network an attractive research theme. This attention has led to the identification of the importance of measuring energy nodes. In multiple MG networks, the energy nodes are regarded as one MG. This paper presents a modified PageRank algorithm to assess the importance of MGs that include multiple DERs and ESS. With the importance rank order list of the multiple MG networks, the core MG (or node) of power production and consumption can be identified. Identifying such an MG is useful in preventing cascading failures by distributing the concentration on the core node, while increasing the effective link connection of the energy flow and energy trade. This scheme can be applied to identify the most profitable MG in the energy trade market so that the deployment operation of the MG connection can be decided to increase the effectiveness of energy usages. By identifying the important MG nodes in the network, it can help improve the resilience and robustness of the power grid system against large-scale cascading failures and other unexpected events. The proposed algorithm can point out which MG node is important in the MGs power grid network and thus, it could prevent the cascading failure by distributing the important MG node's role to other MG nodes.
This study primarily focused on the development of an Explainable Artificial Intelligence (XAI) model to discern and analyze papers with significant impact in the field of mathematics education. To achieve this, meta-information from 29 domestic and international mathematics education journals was utilized to construct a comprehensive academic research network in mathematics education. This academic network was built by integrating five sub-networks: 'paper and its citation network', 'paper and author network', 'paper and journal network', 'co-authorship network', and 'author and affiliation network'. The Random Forest machine learning model was employed to evaluate the impact of individual papers within the mathematics education research network. The SHAP, an XAI model, was used to analyze the reasons behind the AI's assessment of impactful papers. Key features identified for determining impactful papers in the field of mathematics education through the XAI included 'paper network PageRank', 'changes in citations per paper', 'total citations', 'changes in the author's h-index', and 'citations per paper of the journal'. It became evident that papers, authors, and journals play significant roles when evaluating individual papers. When analyzing and comparing domestic and international mathematics education research, variations in these discernment patterns were observed. Notably, the significance of 'co-authorship network PageRank' was emphasized in domestic mathematics education research. The XAI model proposed in this study serves as a tool for determining the impact of papers using AI, providing researchers with strategic direction when writing papers. For instance, expanding the paper network, presenting at academic conferences, and activating the author network through co-authorship were identified as major elements enhancing the impact of a paper. Based on these findings, researchers can have a clear understanding of how their work is perceived and evaluated in academia and identify the key factors influencing these evaluations. This study offers a novel approach to evaluating the impact of mathematics education papers using an explainable AI model, traditionally a process that consumed significant time and resources. This approach not only presents a new paradigm that can be applied to evaluations in various academic fields beyond mathematics education but also is expected to substantially enhance the efficiency and effectiveness of research activities.
KIPS Transactions on Software and Data Engineering
/
v.10
no.12
/
pp.547-554
/
2021
Cancer patients can have different kinds of cancer driver genes, and identification of these patient-specific cancer driver genes is an important step in the development of personalized cancer treatment and drug development. Several bioinformatic methods have been proposed for this purpose, but there is room for improvement in terms of accuracy. In this paper, we propose NPD (Network based Patient-specific Driver gene identification) for identifying patient-specific cancer driver genes. NPD consists of three steps, constructing a patient-specific gene network, applying the modified PageRank algorithm to assign scores to genes, and identifying cancer driver genes through a score comparison method. We applied NPD on six cancer types of TCGA data, and found that NPD showed generally higher F1 score compared to existing patient-specific cancer driver gene identification methods.
Journal of the Korean BIBLIA Society for library and Information Science
/
v.22
no.4
/
pp.361-379
/
2011
This paper aims to propose the most appropriate method for calculating the journal PageRank in a domestic citation database. Korean journals show relatively high journal self-citation ratios and have many outgoing citations to external journals which are not included in the domestic citation database. Because the PageRank algorithm requires recursive calculation to converge, those two characteristics of domestic citation databases must be accounted for in order to measure the citation impact of Korean journals. Therefore, two PageRank calculation methods and four formulas for self-citation adjustment have been examined and tested for KSCD journals. The results of the correlation analysis and regression analysis show that the SCImago Journal Rank formula with the cr2 type self-citation adjustment method seems to be a more appropriate way to measure the relative impact of domestic journals in the Korean Science Citation Database.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.1
/
pp.421-433
/
2015
Recently, there have been fast-growing social network services based on the Internet environment and web technology development, the prevalence of smartphones, etc. Social networks also allow the users to convey the information and news so that they have a great influence on the public opinion formed by social interaction among users as well as the spread of information. On the other hand, these social networks also serve as perfect environments for rampant malware. Malware is rapidly being spread because relationships are formed on trust among the users. In this paper, an effective patch strategy is proposed to deal with malicious worms based on social networks. A graph is formed to analyze the structure of a social network, and subgroups are formed in the graph for the distributed patch strategy. The weighted directions and activities between the nodes are taken into account to select reliable key nodes from the generated subgroups, and the Incremental PageRanking algorithm reflecting dynamic social network features (addition/deletion of users and links) is used for deriving the high influential key nodes. With the patch based on the derived key nodes, the proposed method can prevent worms from spreading over social networks.
Journal of the Korean Society for information Management
/
v.30
no.1
/
pp.179-191
/
2013
Since information scientists have begun trying to quantify significant research trends in scientific publications, '-metrics' research such as 'bibliometrics', 'scientometrics', 'informetrics', 'webometrics', and 'citation analysis' have been identified as crucial areas of information science. To illustrate the dynamic research activities in these areas, this study investigated the major contributors of '-metrics' research for the last decade at three levels: nations, institutions, and documents. '-metrics' literature of this study was obtained from the Science Citation Index for the years 2001-2011. In this analysis, we used Pathfinder network, PNNC algorithm, PageRank and several indicators based on h-index. In terms of international collaborations, USA and England were identified as major countries. At the institutional level, Katholieke University, Leuven and the University of Amsterdam in Europe and Indiana University and the Office of Naval Research in the USA have led co-research projects in informetrics areas. At the document level, Hirsch's h-index paper and Ingwersen's web impact factor paper were identified as the most influential work by two methods: PageRank and single paper h-index.
Journal of the Korean Society for Library and Information Science
/
v.45
no.2
/
pp.119-143
/
2011
This study identifies the characteristics of recent citation-based indicators for assessing a single paper in the context of their co-relationships. Five predefined indicators were examined with three variants of h-index which are convened in this study; the formers are PageRank, SCEAS Rank, CCI, f-value, and single paper h-index and the latters are $h_S$-index, h1-index, and $h_S$1-index. The correlation analysis and cluster analysis were performed to group the indicators by common characteristics, after which the indicators were calculated with the dataset from KSCI DB. The results show statistical evidence that distinguishes h-index type indicators from others. The characteristics of the indicators were verified with citation frequency factors using correlation analysis. Finally, the implications for applications and further studies are discussed.
The identification of genes that contribute to the prediction of prognosis in patients with cancer is one of the challenges in providing appropriate therapies. To find the prognostic genes, several classification models using gene expression data have been proposed. However, the prediction accuracy of cancer prognosis is limited due to the heterogeneity of cancer. In this paper, we integrate microarray data with biological network data using a modified PageRank algorithm to identify prognostic genes. We also predict the prognosis of patients with 6 cancer types (including breast carcinoma) using the K-Nearest Neighbor algorithm. Before we apply the modified PageRank, we separate samples by K-Means clustering to address the heterogeneity of cancer. The proposed algorithm showed better performance than traditional algorithms for prognosis. We were also able to identify cluster-specific biological processes using GO enrichment analysis.
Journal of the Korean Society for information Management
/
v.32
no.4
/
pp.205-221
/
2015
The impact of a journal is commonly used as the impact of an individual paper within that journal. It is problematic to interpret a journal's impact as a single paper's impact of the journal, so there are several researches to measure a single paper's impact with its own citation counts. This study applied 8 impact indicators to Korean Citation Index database and examined discipline bias of each indicator. Analyzed indicators are simple citation counts, PageRank, f-value, CCI, c-index, single publication h-index, single publication hs-index, and cl-index. PageRank has the least discipline bias at highly ranked papers and journal bias in a discipline. On the contrary, simple citation counts showed strongly biased results toward a certain discipline or a journal. KCI database provides only simple citation counts. It needs to show PageRank (global indicator) to discover influential papers in diverse areas. Furthermore it needs to consider to provide the best of local indicators. Local indicators can be calculated only with papers in users' search results because they uses citation counts of citing papers and the number of references. They are more efficient than global indicators which explore the whole database. KCI should also consider to provide Cl-index (local indicator).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.