• Title/Summary/Keyword: panel performance

Search Result 1,533, Processing Time 0.028 seconds

Performance Evaluation of Water Vapour Adsorption & Desorption Properties of Ceramic Panel and Painting Materials for Humidity Control (습도조절용 세라믹패널 및 도료의 흡·방습성능 평가)

  • Jang, Kun-Young;Ryu, Dong-Woo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.3
    • /
    • pp.43-52
    • /
    • 2018
  • This study is conducted to evaluate the performance of ceramic panels and painting materials for humidity control which are developed in non-plastic room temperature hardening structure as part of a project to improve a residential environment for the low-income class, rather than the performance of high-priced humidity control materials that are produced with the existing plasticity processing. The testing methods included the measurements of absorption & desoprtion of humidity per material; Mock-up Testing; an evaluation method of comparing the absorption & desoprtion performances of Ecocarat, ceramic panels and painting materials through Living Lab. According to the measurements of absorption & desoprtion per material, ceramic panels, E panel, and ceramic painting material showed 73.3g/m2, 96.6g/m2, and 111.1g/m2, respectively. That is, the performance of humidity control of each material was found to be good in the order of: Ceramic Paint > E panel > Ceramic Panel. According to performance evaluation testing with Mock-up test and Living Lab, Ceramic Paint, Ecocarat, and Ceramic Panels showed better absorption & desoprtion performances in the order.

Evaluation of Humidity Control Performance of Low-Priced Ceramic Panels (저가보급형 습도조절용 세라믹패널 조습성능 평가)

  • Jang, Kun-Young;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.184-185
    • /
    • 2017
  • In this study, the performance of low-priced ceramic panels developed to improve the poor interior residential environment of the underprivileged was evaluated by comparing them with the performance of I Company (Japan)'s Eco karat, a representative humidity control panel. Experimental results showed that the humidity control performance of the Ceramic panel was 53.33g/㎡, which was about 54% less effective than 98.88g/m2 of the Ecokarat. As a result, it is believed that the need to improve the quality of the Ceramic panels.

  • PDF

A Study on the Absorption Performance of a Perforated Panel type of Resonator (다공패널형 공명기의 흡음성능에 관한 연구)

  • Song, Hwayoung;Yang, Yoonsang;Lee, Donghoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.224-231
    • /
    • 2016
  • When aiming to reduce the low frequency noise of a subway guest room through sound absorbing treatment methods inside the wall of a tunnel the resonator is often more effective than a porous sound absorbing material. Therefore, the perforated panel type resonator embedded with a perforated panel is proposed. The perforated panel is installed in the neck, which is then extended into the resonator cavity so that it can ensure useful volume. The absorption performance of the perforated panel type of resonator is obtained by acoustic analysis and experiment. The analytical results are in good agreement with the experimental results. In the case of multiple perforated panel type resonators, as the number of perforated panels increase, the 1st resonance frequency is moved to a low frequency band and sound absorption bandwidth is extended on the whole. In order to obtain excellent absorption performance, the impedance matching between multi-panels should be considered. When the perforated panel in the resonator is combined with a porous material, the absorption performance is highly enhanced in the anti-resonance and high frequency range. In case of the resonator inserted with perforated panels of 2, the 2nd resonance frequency is shifted to a low frequency band in proportion to the distance between perforated panels.

Transmission loss of Honeycomb Composite Panel of the Tilting Train (틸팅 열차용 허니콤 복합판재의 투과손실)

  • Kim, Seock-Hyun;Lim, Bong-Gi;Kim, Jae-Chul;Jang, Yun-Tae
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1088-1091
    • /
    • 2009
  • In a tilting train, aluminium honeycomb composite panel is used for the high speed and light weight. Side wall of the tilting train includes the composite panel of carbon fiber, aluminium honeycomb and epoxy fiber as a main structure. In this study, we measure the transmission loss (TL) of the honeycomb composite panel and analyse the sound insulation performance by using the orthotropic plate model. We investigate experimentally how the air gap, plywood and glass wool improve the sound insulation performance of the composite panel. The purpose of the study is to provide practical information for the improvement of TL of the honeycomb composite panel used for the tilting train.

  • PDF

Fire Performance Testing Method for Fire Retardant EPS Sandwich Panel Using X-ray Analysis (X-선 분석법을 이용한 난연 EPS 샌드위치 패널의 화재성능평가 방법에 관한 연구)

  • Shim, Ji-Hun;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.76-83
    • /
    • 2015
  • EPS sandwich panel contains flame retardants that slow down ignition during fires,reduce the amount of heat generated, and block the spread of combustion. However, if a sandwich panel does not satisfy standards for fire-retardant performance, it may increase damage to property and human life. It is difficult to test the fire-retardant performance of a finishing material with the naked eye, so it is necessary to develop convenient and fast evaluation methods that are convenient and fast. In this study, a fire safety evaluation method for EPS sandwich panel was analyzed using X-ray to detect specific components related to the fire-retardant performance X-ray fluorescence analysis (XRF) indicated that suitable panel products contained more aluminum in comparison to unsuitable products. Gibbsite was identified as the main crystalline material of flame retardant EPS through X-ray diffraction analysis (XRD) and was included in both suitable products and unsuitable products, but there was a difference in crystalline structure. This study was verifies the possibility of evaluating fire-retardant performance using ultimate analysis and crystal analysis through these X-ray methods.

A Study of Sound Absorbing Characteristics of the Railway Noise Barrier with Respect to Front Perforated Panel and Absorbing Material (철도 방음벽의 전면 타공과 흡음재 변화에 의한 흡음성능 고찰)

  • Kim, Kwanju;Lee, Junheon;Kim, Sanghun;Park, Jinkyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.4
    • /
    • pp.275-281
    • /
    • 2014
  • This study has been analyzed the sound performance of the noise barriers with respect to the configuration of the front perforated panel geometries and the filled absorption materials. Noise barriers' acoustic performance should be required to meet 0.7 of NRC value at least. The global absorbing performance of the barriers have been investigated by changing the opening ratio of the front perforated panel and the absorbing characteristics of the absorbing material using two microphone method. Therefore, It it possible to obtain to increase acoustic performance of the specific frequency ranges by designing the perforate rates of the front panel and absorbing characteristics of the absorbing materials inside, as well. This study try to find out the possibilities of applying the absorbing noise barrier to railway usage.

Improvement Effect of the Sound Insulation Performance of the Corrugated Steel Panel by Sound Absorbing and Damping Materials (흡음 및 댐핑재 의한 주름강판의 차음성능 개선효과)

  • Kim, Seock-Hyun;Seo, Tae-Gun;Kim, Jung-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.476-480
    • /
    • 2010
  • In the corrugated steel panels used for railway vehicles, sound insulation performance is significantly deteriorated by local resonance effect. In this study, as a countermeasure, polyurethane foam is filled in the corrugated steel panel and glass wool layer is inserted in the layered floor panel, and then improvement effect of the sound insulation performance is experimentally estimated. Based on ASTM E2249-02, intensity transmission loss is measured and estimated on the corrugated panel and floor structure. The aim of the study is to identify how the foam filling and inserting glass wool layer improve the sound insulation performance of the train body structure in aspect of the weight increment.

Performance Evaluation of a Solar Tracking PV System with Photo Sensors (포토센서를 이용한 태양위치 추적기의 성능분석에 관한 연구)

  • Jeong, Byeong-Ho;Cho, Geum-Bae;Lee, Kang-Yeon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.67-73
    • /
    • 2013
  • The conversion of solar radiation into electrical energy by Photo-Voltaic (PV) effect is a very promising technology, being clean, silent and reliable, with very small maintenance costs and small ecological impact. The output power produced by the PV panels depends strongly on the incident light radiation. The continuous modification of the sun-earth relative position determines a continuously changing of incident radiation on a fixed PV panel. The point of maximum received energy is reached when the direction of solar radiation is perpendicular on the panel surface. Thus an increase of the output energy of a given PV panel can be obtained by mounting the panel on a solar tracking device that follows the sun trajectory. Tracking systems that have two axes and follow the sun closely at all times during the day are currently the most popular. This paper presents research conducted into the performance of Solar tracking system with photosensors. The results show that an optimized dual-axis tracking system with photosensor performance and analysis. From the obtained results, it is seen that the sun tracking system improves the energy and energy efficiency of the PV panel.ti-junction CPV module promises to accelerate growth in photovoltaic power generation.

Displacement-based design method for an energy-dissipation self-centering wall panel structure

  • Sisi Chao;Guanqi Lan;Hua Huang;Huiping Liu;Chenghua Li
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.289-304
    • /
    • 2024
  • The seismic performance of traditional steel frame-shear wall structures was significantly improved by the application of self-centering steel-reinforced concrete (SRC) wall-panel structures in the steel frames. This novel resilience functionality can rapidly restore the structure after an earthquake. The presented steel frame with steel-reinforced concrete self-centering wall-panel structures (SF-SCW) was validated, indicating its excellent seismic performance. The seismic design method based on bear capacity cannot correctly predict the elastic-plastic performance of the structure, especially certain weak floors that might be caused by a major fracture. A four-level seismic performance index, including intact function, continued utilization, life safety, and near-collapse, was established to achieve the ideal failure mode. The seismic design method, based on structural displacement, was proposed by considering performance objectives of the different seismic action levels. The pushover analysis of a six-floor SF-SCW structure was carried out under the proposed design method and the results showed that this six-floor structure could achieve the predicted failure mode.