• Title/Summary/Keyword: pancreatic secretion

Search Result 154, Processing Time 0.029 seconds

Mechanism of Pancreatic Secretory Response to Electrical Stimulation of Medial Amygdaloid Nucleus in Rats (흰쥐에서 내측 편도핵의 전기 자극에 의한 췌액 분비 증가 기전)

  • Yoon, Shin-Hee;Hahn, Sang-June;Jo, Yang-Hyeok
    • The Korean Journal of Physiology
    • /
    • v.23 no.2
    • /
    • pp.401-408
    • /
    • 1989
  • This study was conducted to investigate whether an electrical stimulation of medial amygdaloid nucleus in rats increases pancreatic secretion. And an involvement of vagus nerve or plasma secretin in this process was also studied. In fasting rats anesthetized with urethane, a monopolar stainless steel electrode was stereotaxically inserted into the right medial amygdaloid nucleus. Pancreatic juice was collected for 20 minutes, during which physiological saline or 0.01 N HCI (0.18 ml/min) was perfused into the duodenum with or without bilateral subdiaphragmatic vagotomy. In the medial amygdaloid group, an electrical stimulation was continuously applied to the medial amygdaloid nucleus during the perfusion period. After collection of pancreatic juice, blood was drawn from the abdominal aorta for determination of the plasma secretin level. The results were as follows: 1) The electrical stimulaion of the medial amygdaloid nucleus did not influence the pancreatic secretion in response to intraduodenal saline perfusion. 2) The stimulation of the medial amygdaloid nucleus significantly increased the pancreatic secretory response (volume, bicarbonate output) to the intraduodenal 0.01 N HCI perfusion, and the increases were abolished by vagotomy. 3) The plasma secretin concentration after the intraduodenal 0.01 N HCI perfusion was higher than that after the saline perfusion. However, neither the electrical stimulation of the medial amygdaloid nucleus nor vagotomy affected the plasma secretin concentration during the intraduodenal perfusion with saline or 0.01 N HCI. It is, therefore, suggested that the medial amygdaloid nucleus facilitates the pancreatic secretion (volume, bicarbonate) elicited by intraduodenal HCI perfusion through the vagus nerve.

  • PDF

Protopanaxadiol ameliorates palmitate-induced lipotoxicity and pancreatic β-cell dysfunction in INS-1 cells

  • Dahae Lee;Sungyoul Choi;Ki Sung Kang
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.572-582
    • /
    • 2023
  • Background: Free fatty acid-induced lipotoxicity is considered to play an important role in pancreatic β-cell dysfunction. The effect of ginsenosides on palmitic acid-induced pancreatic beta-cells cell death and failure of glucose-stimulated secretion of insulin (GSIS) was evaluated in this study. Methods: Enzyme-linked immunosorbent assay kit for a rat insulin was used to quantify glucose-stimulated insulin secretion. Protein expression was examined by western blotting analysis. Nuclear condensation was measured by staining with Hoechst 33342 stain. Apoptotic cell death was assessed by staining with Annexin V. Oil Red O staining was used to measure lipid accumulation. Results: We screened ginsenosides to prevent palmitic acid-induced cell death and impairment of GSIS in INS-1 pancreatic β-cells and identified protopanaxadiol (PPD) as a potential therapeutic agent. The protection effect of PPD was likely due to a reduction in apoptosis and lipid accumulation. PPD attenuated the palmitic acid-induced increase in the levels of B-cell lymphoma-2-associated X/B-cell lymphoma 2, poly (ADP-ribose) polymerase and cleaved caspase-3. Moreover, PPD prevented palmitic acid-induced impairment of insulin secretion, which was accompanied by an increase in the activation of phosphatidylinositol 3-kinase, peroxisome proliferator-activated receptor γ, insulin receptor substrate-2, serine-threonine kinase, and pancreatic and duodenal homeobox-1. Conclusion: Our results suggest that the protective effect of PPD on lipotoxicity and lipid accumulation induced by palmitic acid in pancreatic β-cells.

Effect of Adrenergic and Cholinergic Agents on the Activities of Protein Methylases in Pancreatic Tissue (생쥐 췌조직내 Protein Methylase에 대한 자율신경계약물의 영향)

  • 유태무;박선미;이향우
    • YAKHAK HOEJI
    • /
    • v.35 no.4
    • /
    • pp.341-347
    • /
    • 1991
  • It was reported that protein carboxymethylation is involved in amylase secretion of parotid gland by isoproterenot. It was also suggested that a small part of the total cellular protein carboxymethylation is directly involved in pancreatic enzyme secretion. On the contrary, other authors reported that there is no relationship between protein carboxymethylation and secretion in pancreas and parotid gland. In recent study, it was proposed that a methyl acceptor protein plays a limited modulatory role in the coupling of cytosolic $Ca^{++}$ accumulation and exocytosis. In this study, the effects of cholinergic and adrenergic agents on the activities of protein methylase II in pancreatic tissues were examined to test the relationship between protein methylation and pancreatic secretion. The results are as follows. The activity of amylase was slightly increased at the concentration of $10^{-5}$ M of isoproterenol and norepinephrine. The activities of protein methylase I and II were decreased by isoproterenol and norepinephrine, but the activities of protein methylase III were hardly changed. The cholinergic stimulants acetylcholine and carbachol at a concentration of $10^{-5}$ M increased the activities of protein methylase I and decreased the activitiy of protein methylase III compared with control.

  • PDF

Effects of ${\gamma}-Aminobutyric$ Acid on Intrinsic Cholinergic Action in Exocrine Secretion of Isolated, Perfused Rat Pancreas

  • Park, Yong-Deuk;Park, Hyung-Seo;Cui, Zheng-Yun;Park, Hyoung-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.3
    • /
    • pp.169-174
    • /
    • 2003
  • ${\gamma}$-Aminobutyric acid (GABA) has been reported to enhance exocrine secretion evoked not only by secretagogues but also by intrinsic neuronal excitation in the pancreas. The pancreas contains cholinergic neurons abundantly that exert a stimulatory role in exocrine secretion. This study was undertaken to examine effects of GABA on an action of cholinergic neurons in exocrine secretion of the pancreas. Intrinsic neurons were excited by electrical field stimulation (EFS; 15 V, 2 msec, 8 Hz, 45 min) in the isolated, perfused rat pancreas. Tetrodotoxin or atropine was used to block neuronal or cholinergic action. Acetylcholine was infused to mimic cholinergic excitation. GABA $(30{\mu}M)$ and muscimol $(10{\mu}M)$, given intra-arterially, did not change spontaneous secretion but enhanced cholecystokinin (CCK; 10 pM)-induced secretions of fluid and amylase. GABA (3, 10, $30{\mu}M$) further elevated EFS-evoked secretions of fluid and amylase dose-dependently. GABA (10, 30, $100{\mu}M$) also further increased acetylcholine $(5{\mu}M)$-induced secretions of fluid and amylase in a dose-dependent manner. Bicuculline $(10{\mu}M)$ effectively blocked the enhancing effects of GABA $(30{\mu}M)$ on the pancreatic secretions evoked by either EFS or CCK. Both atropine $(2{\mu}M)$ and tetrodotoxin $(1{\mu}M)$ markedly reduced the GABA $(10{\mu}M)$-enhanced EFS- or CCK-induced pancreatic secretions. The results indicate that GABA enhances intrinsic cholinergic neuronal action on exocrine secretion via the $GABA_A$ receptors in the rat pancreas.

Dietary Factors for Secretary Digestive Enzyme from the Pancreas in the Chicken (계의 췌장소화효소 분비에 미치는 사료성분에 관한 연구)

  • 양성익
    • Korean Journal of Poultry Science
    • /
    • v.16 no.4
    • /
    • pp.219-232
    • /
    • 1989
  • The present study was done to investigate the mechanism of Pancreatic digestive enzyme secretion in response to dietary components in chicks. A simplefied pancreatic juice collection method, useful for a short-term experiment, was developed. By wing vein injection, it was shown that the increased trypsinogen and chymotrypsinogen, while neither other single amino acids nor glucose affected the secretion of enzymes, amylase, trypsinogen and chymotrypsinogen. Cholecystokinin (CCK) had an immediate effect on pancreatic enzyme secretion and this response was in a dose dependent fashion. The injection of CCK seemed to have selective stimulation favoring the secretion of chymotrypsinosen followed by amylase and trypsinogen. Simultaneous injection of single amino acid with CCK increased digestive enzyme secretion to various extents depending on the kind of amino acids whereas the injection of glucose with CCK did not affect when compared with that of CCK'alone. By varying doses, synergetic action of CCK plus amino acid on the secretion of pancreatic digestive enzymes was observed at 0.5mM for Val and 5mM for Arg. A further attempt was made to examine the effect of combined administration of amino acids with CCK on pancreatic enzyme secretion. The injected substances were an AAs mixture and combination of selected amino acids, i.e. Thr+Phe+Ile, Thr+Phe. Thr+Ile or Phe+Ile. When increases in enzyme outputs for the first 30 min were compared , it was shown that the responses of three enzymes, amylase, trypsinogen and chymotrypsinogen, brought about by the administration of the AAs mixture was almost entirely accounted for by the combined injection of Thr+Phe. Thus, it was well demonstrated that CCK and amino acids had a synergetic action on the secretion of a specific pancreatic digestive enzyme depending on a kind of amino acid injected.

  • PDF

Effect of Heavy Metals on the Secretion of Amylase in Rat Pancreatic Fragments (중금속류가 취절편의 Amylase 분비에 미치는 영향)

  • Kim, Hea-Young;Kim, Won-Joon
    • The Korean Journal of Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.31-36
    • /
    • 1981
  • Heavy metals which are present as trace elements in human body have been known to modify various enzymatic reaction. These metals can be essential or non-essential. Zinc, copper and calcium are essential in maintaining some biological processes, whereas non-essential metals such as cadmium, lead and mercury produce accumulatve toxic effect. Cadmium accumulated in pancreas can cause toxicity and damage of pancreatic cells, thereby influencing CHO metabolism. Lead compounds are known to produce toxic effects on the kidney, digestive system and brain fellowed by inhibition of activity of ${\rho}-aminolevulinic$ acid and biosynthesis of hemoproteins and cytochrome. Evidence has been accumulated that zinc not only acts as a cofactor in enzyme reaction but also prevents toxic effect induced by heavy metal such as copper and cadmium. To demonstrate the effect of heavy metals on pancreatic secretion, part of uncinate pancreas was taken and incubated in Krebs-Ringer bicarbonate buffer with heavy metals used. Additional treatment with CCK-OP was performed when needed. After incubation during different period of time, medium was analyzed for amylase activity using Bernfeld's method. The present study was attempted in order to elucidate the effect of several kinds of heavy metal on exocrine pancreatic secretion in vitro. The results obtained are as follows: 1) CCK-OP stimulated significantly amylase release from pancreatic fragments in vitro. 2) CCK-OP response of amylase release from pancreatic fragments was inhibited by treatmant with cadmium, especially high doses of cadmium. 3) CCK-OP response of amylase release from pancreatic fragments was inhibited when pretreated with $10^{-4}M$ copper chloride. 4) Lead chloride at the concentration of $10^{-3}M\;and\;10^{4}M$ stimulated the basal amylase release in vitro but CCK-OP response did not augment by lead chloride. 5) Zine chloride did not affect amylase release from pancreatic fragment in vitro. From the results mentioned above, it is suggested that CCK-OP response was inhibited it the amylase release from pancreatic fragments pretreated with cadmium and copper chloride.

  • PDF

Effects of ${\rho}-Chlorophenylalanine$ on the Synthesis of Pancreatic Amylase in Rats

  • Kwon, Hyeok-Yil;Eum, Won-Sik;Jang, Hyun-Woo;Lee, Yun-Lyul;Park, Hyoung-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.2
    • /
    • pp.129-135
    • /
    • 2000
  • Previously, we have reported that ${\rho}-chlorophenylalanine$ (PCPA), a serotonin depletor, profoundly increased pancreatic fluid and bicarbonate secretion but remarkably inhibited pancreatic amylase secretion in anesthetized rats. The present study was performed to verify the detailed effects of PCPA on pancreatic amylase synthesis that is directly related to amylase exocrine secretion. PCPA significantly decreased pancreatic RNA and protein contents as well as the amylase activity. However, pancreatic DNA content, trypsin and chymotrypsin activities were not influenced by the treatment of PCPA. The rate of pancreatic amylase synthesis, which was assessed by the amount of incorporated $[^{35}S]-methionine$ into amylase for 1 h, was also significantly decreased by 44% in PCPA-treated rats. In order to determine whether the PCPA-induced decrease of amylase synthesis resulted from change in the level of amylase mRNA, Northern blot analysis was performed. The mRNA expression level of amylase was also decreased by 48% in the PCPA-treated rats, indicating that the inhibitory effect of PCPA on the synthesis of pancreatic amylase was mainly regulated at a step prior to translation. It was also revealed in SDS-polyacrylamide gel electrophoresis that the qualitative change of amylase was induced by PCPA. The 54 KDa amylase band seems to be degraded into small molecular weight protein bands in PCPA-treated rats, suggesting that the PCPA- induced decrease of amylase may be partly attributed to the degradation of synthesized amylase.

  • PDF

Coordination of Pancreatic $HCO_3^-$ Secretion by Protein-Protein Interaction between CFTR and Luminal NHE

  • Wooin Ahn;Kim, Kyung-Hwan;Lee, Jin-Ah;Kim, Joo-Young;Park, Joo-Young;Shmuel Muallem;Lee, Min-Goo
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.56-56
    • /
    • 2001
  • Increasing evidence suggests that protein-protein interaction is essential in many biological processes including epithelial transport. In this report, we present the significance of protein interactions to HCO$_3$$^{-10}$ secretion in pancreatic duct cells. In pancreatic ducts HCO$_3$$^{-10}$ secretion is mediated by CFTR-activated luminal CUHCO$_3$$^{-10}$ exchange activity and HCO$_3$$^{-10}$ absorption is achieved by Na$^{+}$-dependent mechanism including NHE3.(omitted)

  • PDF

NO/cGMP Pathway is Involved in Exocrine Secretion from Rat Pancreatic Acinar Cells

  • Ahn, Seong-Hoon;Seo, Dong-Wan;Ko, Young-Kwon;Sung, Kae-Suk;Bae, Gyu-Un;Yoon, Jong-Woo;Hong, Sung-Youl;Han, Jeung-Whan;Lee, Hyang-Woo
    • Archives of Pharmacal Research
    • /
    • v.21 no.6
    • /
    • pp.657-663
    • /
    • 1998
  • The enzyme responsible for the synthesis of nitric oxide (NO) from L-arginine in mammalian tissues is known as nitric oxide synthase (NOS) (EC.1.14.13.39). In the present study, the role of NO in the regulation of exocrine secretion was investigated in rat pancreatic acinar cells. Treatment of rat pancreatic acinar cells with cholecystokinin-octapeptide (CCK-OP) resulted in an increase in the arginine conversion to citrulline, the amount of $NO_X$, the release of amylase, and the level of CGMP. Especially, CCK-OP-stimulated increase of arginine to citrulline transformation, the amount of $NO_X$, and CGMP level were completely counteracted by the inhibitor of NOS, NG-monomethyl-L-arginine (MMA), by contrast, that of amylase release was partially reduced. Furthermore, MMA-induced decrease of NOS activity and amylase release showed dose-dependent pattern. The data on the time course of CCK-OP-induced citrulline formation and CGMP rise indicate that NOS and guanylate cyclase were activated by treatment of CCK-OP. However, the mechanism of agonist-stimulated guanylate cyclase activation in acinar cells remains unknown. Therefore, activation of NOS is one of the early events in receptor-mediated cascade of reactions in pancreatic acinar cells and NO, not completely, but partially mediate pancreatic enzyme exocrine secretion.

  • PDF