• Title/Summary/Keyword: panaxydol

Search Result 33, Processing Time 0.028 seconds

10-Acetyl panaxytriol, A new cytotoxic polyacetylene from Panax ginseng (인삼중의 세포독성물질 10-Acetyl panaxytriol 의 분리)

  • Kim, Shin-Il;Lee, You-Hui;Kang, Kyu-Sang
    • YAKHAK HOEJI
    • /
    • v.33 no.2
    • /
    • pp.118-123
    • /
    • 1989
  • A new polyacetylene compound which has strong cytotoxic activity against L1210 cell, was isolated from Korean ginseng roots. The structure was determined to be heptadeca-1-ene-4,6-diyne-3,9-diol-10-acetate (10-acetyl panaxytriol, $ED_{50}\;=\;1.2\;{\mu}g/ml$). The cytotoxicities of this compound and acetyl panaxydol lower than their starting substances, panaxytriol and panaxydol. The presence of one for the decreases in the cytotoxicities.

  • PDF

Effects of Polyacetylene Compounds from Panax Ginseng C.A. Meyer on $CCl_4$-Induced Lipid Peroxidation in Mouse Liver

  • Kim, Hye-Young;Lee, You-Hui;Kim, Shin-Il
    • Toxicological Research
    • /
    • v.4 no.1
    • /
    • pp.13-22
    • /
    • 1988
  • The inhibitory effect of three polyacetylene compounds, panaxydol, panaxynol and panaxytriol isolated from Panax ginseng C.A. Meyer on $CCl_4$induced lipid peroxidation in vivo and in vitro hepatic microsomal lipid peroxidation induced by ADP-$Fe^{3+}$, NADPH and NADPH-cytochrome P-450 reductase were investigated. Their effects on lowering the lipid peroxide levels both in serum and liver and lowering the serum enzyme (GOT, GPT, LDH) activities without the $CCl_4$-induction were also determined. Male ICR mice were pretreated i.p. with polyacetylene compounds or DL-${\alpha}$-tocopherol before administration of $CCl_4$ i.p. and 20 hr after the administration of $CCl_4,$ serum and liver were analyzed. Hepatic microsome was isolated and used for the in vitro NADPH-dependent lipid peroxidation system. Except for panaxynol, treatment with polyacetylenes to control mice did not reduce the levels of lipid peroxides and serum enzyme activities. Panaxynol itself inhibited lipid peroxidation in the liver of normal mice. Polyacetylene compounds protected from the $CCl_4$-induced hepatic lipid peroxidation and lowered serum lipid peroxide levels. Polyacetylenes also inhibited the in virto hepatic microsomal lipid peroxidation in a dose-dependent manner. The results suggest that panaxydol, panaxynol and panaxytriol seem to be the antioxidant components which contribute the anti-aging activities of Panax ginseng C.A. Meyer.

  • PDF

Polyacetylenes from the Tissue Cultured Adventitious Roots of Panax ginseng C.A. Meyer

  • Xu, Guang-Hua;Choo, Soo-Jin;Ryoo, In-Ja;Kim, Young-Hee;Paek, Kee-Yoeup;Yoo, Ick-Dong
    • Natural Product Sciences
    • /
    • v.14 no.3
    • /
    • pp.177-181
    • /
    • 2008
  • Five polyacetylenes, ginsenoyne K (1), (Z)-1-methoxyheptadeca-9-en-4,6-diyne-3-one (2), panaxydol (3), panaxydiol (4), and (E)-heptadeca-8-en-4,6-diyne-3,10-diol (5) were isolated from the adventitious roots of Panax ginseng and their chemical structurFive polyacetylenes, ginsenoyne K (1), (Z)-1-methoxyheptadeca-9-en-4,6-diyne-3-one (2), panaxydol (3), panaxydiol (4), and (E)-heptadeca-8-en-4,6-diyne-3,10-diol (5) were isolated from the adventitious roots of Panax ginseng and their chemical structures were elucidated by interpretation of spectroscopic data. Among the isolated compounds, compounds 2 and 5 were reported for the first time as a natural product. Ginsenoyne K (1) showed dose-dependent inhibitory effect on dopa oxidase activity of tyrosinase.es were elucidated by interpretation of spectroscopic data. Among the isolated compounds, compounds 2 and 5 were reported for the first time as a natural product. Ginsenoyne K (1) showed dose-dependent inhibitory effect on dopa oxidase activity of tyrosinase.

Biological Activities and Metabolite Analysis of Various Extracts and Fractions from Red Ginseng Marc

  • Lee, Dong Gyu;Jang, Ik Soon;Kang, Young-Hwa
    • Korean Journal of Plant Resources
    • /
    • v.33 no.6
    • /
    • pp.597-603
    • /
    • 2020
  • Red ginseng marc (RGM) has been used on primary industries using fertilizer or forage, and it mostly has been dumped. To improve utilization of RGM, the biological activities of RGM were examined. RGM was extracted and fractionated using various solvents and their biological activities were compared. The hexane fraction from the methanol extract of RGM (RGMMH) showed strong anti-cancer activity (58.56 ± 6.04% at 100 ㎍/mL) and anti-inflammatory effect (65.72 ± 1.33% at 100 ㎍/mL). But, oil extract of RGM extracted with hexane (RGMH) showed low activities (anti-cancer: 16.42 ± 3.33%, at 100 ㎍/mL, anti-inflammatory activity: 29.46 ± 2.10%, at 100 ㎍/mL). Their metabolites were analyzed using HPLC. Panaxydol known as anti-cancer compound of RGM was one of major compounds in RGMMH. Meanwhile, panaxydol was detected in trace amount in red ginseng marc oil (RGMH). In addition, RGMMH and RGMH showed big differences in HPLC profiling. This research suggests optimal extraction method of RGM oil.

Effects of Polyacetylenes in Ginseng on Activity of Enzymes Related to Post-translational Modification of Ras Protein and Effects of Petroleum Ether Extract of Ginseng on Progression of Cell Cycle (인삼의 polyacetylene 계 성분이 Ras 단백질 변형 효소의 활성에 미치는 영향과 인삼의 석유에텔 추출물이 세포주기에 미치는 영향)

  • 김동청;이지영;인만진;채희정;황윤경;황우익
    • Journal of Ginseng Research
    • /
    • v.25 no.4
    • /
    • pp.156-161
    • /
    • 2001
  • We investigated the effects of polyacetylenes of ginseng on farnesyl protein transferase (FPTase) and carboxyl methyl transferase (CMTase) activities related to post-translational modification of Ras protein. We also investigated the effect of petroleum ether extract (PEE) of ginseng on progression of cell cycle. FPTase activity was respectively inhibited 16.2% by 10mM panaxynol and 21.3% by 10mM panaxydol, whereas CMTase activity was not inhibited by panaxynol or panaxydol. Treatment of PEE significantly reduced the numbers and size of human colon cancer cell (HT-29) and human liver cancer cell(HepG2) cultured, respectively. To investigate the mechanism of growth inhibition by PEE of ginseng, we analyzed the cell cycle progressions of PT-29 and HepG2 cells, respectively. We found that PEE significantly inhibited progression of cell cycle from G1 to S phase. These results suggest that anticancer effects of PEE were derived from the arrest of G1 phase in cell cycle progression.

  • PDF

A POSSIBLE MECHANISM OF POLYACETYLENE: MEMBRANE CYTOTOXICITY

  • Kim, Hyeyoung;Lee, You-Hni;Kim, Shin-Il
    • Toxicological Research
    • /
    • v.4 no.2
    • /
    • pp.95-105
    • /
    • 1988
  • The effects of polyacetylenes on living membrances, rat erythrocyte and murine leukemic L1210 cell as well as artificial lipid bilayer were determined to investigate the cytotoxic mechanism of polyacetylenes against cancer cell lines. As results, panaxydol and panaxynol caused erythrocyte hemolysis dose-dependently while panaxytriol had no lysis. For liposomes composed of phosphatidyl choline (PC) and phosphatidic acid(PA), all three polyacetylenes supressed the osmotic behavior at the same degree.

  • PDF

Antineoplastic Natural Products and the Analogues VI - Panaxydol, the cytotoxic Principle of the Panax Ginseng Root against L1210 Cell

  • Ahn, Byung-Zun;Kim, Shin-Il
    • Archives of Pharmacal Research
    • /
    • v.8 no.4
    • /
    • pp.283-284
    • /
    • 1985
  • It was previously reported that the petroleum ether fraction of the Korean ginseng root shows cytotoxic activities against L1210, L5178Y, Hela cell and Sarcoma 180 cell (1). In this study the cytotoxic substance against L1210 cell was isolated over a silica gel column and a preparative HPLC, followed by the cytotoxic assay (2).

  • PDF

Antineoplastic Natural Products and the Analogues(IX). A Review of the Series

  • Ahn, Byung-Zun;Kim, Shin-Il;Ryu, Sung-Ho;Kang, Kyu-Sang;Lee, You-Hui
    • Korean Journal of Pharmacognosy
    • /
    • v.17 no.2
    • /
    • pp.168-177
    • /
    • 1986
  • Bioassay-directed isolation has yielded some cytotoxic substances against L1210 cell from the Korean traditional medicine. These include 5,2'-dihydroxy-6,7,8,6'-teramethoxyflavone $(IV,\;scutellaria\;root,\;ED_{50}\;=\;1.7\;{mu}g/ml)$, 7-geranyloxycoumarin $(XXXII,\;poncirus\;fruit,\;10.2\;{mu}g/ml) $and panaxydol $(I,\;white\;ginseng,\;0.03\;{mu}g/ml)$. IV, XXXII and their derivatives were synthesized in the purpose of in vivo tests and for observation of structure-activity relations. Among the flavone derivatives, 5,2',6'-trihydroxy-6,7,8-trimethoxy flavone (XVIII), 5-hydroxy-6,7,8-trimethoxy-6'-benzyloxyflavone (XVII) and 5,8-dihydroxy-6,7-dimethoxyflavone (X) showed the cytotoxicity which has no correlation to the flavone structures. Of the coumarins synthesized, 7,8-dihydroxycoumarin (XXVI), 6-7-dihydroxycoumarin (XXIX) and 6-hydroxy-5,7-dimethoxycoumarin (XXXI) showed considerable activities. Acetylated XXXI has moderate activity $(ED_{50}=17.2\;{mu}g/ml)$. Monobydroxycoumarins or their methyl and allyl ether were inactive. IV inhibits the growth of the solid form of S-180 by 70% at 40 mg/kg and shows T/C of 166% on the ascitic S-180 at 40 mg/kg. It strongly inhibits the activity of the membrane bounded ATPase from L1210 cell. The most cytotoxic fraction of the antitumor materials studied is the one from the trichosanthes root showing $ED_{50}=0. 0003\;{mu}g/ml$ against L1210 cell. This fraction, obtained from ethyl acetate extract, showed T/C of 130 and 135%, on ICR mice bearing S-180 and $BDF_1$ mice bearing L1210 at 10 mg/kg and 7.5 mg/kg, respectively.

  • PDF

The Production of Anti-cancer Substances by in vitro Grown Cultures of Panax ginseng C.A. Meyer

  • Yang, Deok-Chun;Park, Kyung-Hwa;Kim, Yong-Hae;Yoon, Eui-Soo;Kang, Tae-Jin;Park, Kwang-Tae
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.46-57
    • /
    • 1999
  • Ginseng(Panax ginseng C.A. Meyer) is important medicinal plant but requires 4-year cultivation for root harvest because of slow growth. In contrast, ginseng callus and hairy roots grow vigorously and may Produce the same or more biologically active compounds for human health than natural ginseng roots. Therefore, ginseng callus and hairy roots can be used for commercial purposes. Polyacetylene, one of anti-cancer compounds in ginseng, was not detected in the callus cultured on the medium containing 2, 4-B, but cells derived from the callus growth was excellent, The ginseng calli cultured on the medium containing 2mg11 CPA and 0.05mg/1 BA was grown vigorously and produced panaxydol, one of ginseng polyacetylene. The biosynthesis of polyacetylene in callus was not affected by addition of NAA and sucrose in media. The SH medium was better than the MS medium for ginseng callus growth and biosynthesis of panaxydol. Another ginseng anti-cancer compounds, ginsenoside-Rg$_3$, Rh$_1$and Rh$_2$ were detected in ginseng hairy roots by heat treatment. Those of Panax ginseng were obtained after root disks of three-year old roots were infected with Agrobacterium rhizogenes Rl000 $A_4$T in dark condition after one month of culture. The optimum growth of hairy roots was achieved in the culture of 1/2 MS liquid medium in dark(22$^{\circ}C$) under 60 rpm gyratory shaking. Hairy roots grew well in 5 ι Erlenmeyer flasks, 1ι roller drums, 10ι jar-fermenters, and especially in 20ι air-lift .culture vessels. All heat treatments had remarkably different ginsenoside contents. Eleven ginsenosides were determined in heat treatment, eight in freeze dried hairy roots. Contents of ginsenoside-Rbl , Rb2, Rc, Rd. Re, Rf, and Rg$_1$tested in all heat treatments were less than those of freeze dried hairy roots. Contents of glnsenoside-Rg$_2$ in heat treatment for 1 hour at 105$^{\circ}C$ was 4.92mg/g dry wt, 3.9 times higher than 1.27 mg/g dry wt of freeze dried hairy roots. The optimum condition of heat treatment for the production of ginsenoside-Rg$_3$and Rhl was 2 hours at 105$^{\circ}C$, and ginsenoside content was 2.58mg/g dry wt and 3.62mg/g dry wt, respectively. The production of ginsenoside-Rh2 was the highest in heat treatment for 2 hours at 105$^{\circ}C$ among treatments examined, and ginsenoside-Rh$_2$content was 1.08mg/g dry wt.

  • PDF