• 제목/요약/키워드: palm kernel shell ash

검색결과 7건 처리시간 0.022초

Performance investigation of palm kernel shell ash in high strength concrete production

  • Mosaberpanah, Mohammad A.;Amran, Y.H. Mugahed;Akoush, Abdulrahman
    • Computers and Concrete
    • /
    • 제26권6호
    • /
    • pp.577-585
    • /
    • 2020
  • By the increasing amount of waste materials, it eventually dumped into the environment and covering a larger area of the landfill which cause several environmental pollution problems. The utilization of Palm Kernal Shell Ash (PKSA) in concrete might bring a great benefit in addressing both environmental and economic issues. This article investigates the effect of PKSA as a partial cement replacement of High Strength Concrete (HSC). Several concrete mixtures were prepared with different PKSA of 0%, 10%, 20%, and 30% replaced by the cement mass. This procedure was replicated twice for the two different target mean strengths of 40 MPa and 50 MPa. The mixtures were prepared to test different fresh and hardened properties of HSC including slump test, the compressive strength of 3, 7, 14, 28, and 90 days, flexural strength of 28-days, drying shrinkage, density measurement, and sorptivity. It was observed 10% PKSA replacement as optimum percentage which reduced the drying shrinkage, sorptivity, and density and improved the late-age compressive strength of concrete.

Relationships between dielectric properties and characteristics of impregnated and activated samples of potassium carbonate-and sodium hydroxide-modified palm kernel shell for microwave- assisted activation

  • Alias, Norulaina;Zaini, Muhammad Abbas Ahmad;Kamaruddin, Mohd Johari
    • Carbon letters
    • /
    • 제24권
    • /
    • pp.62-72
    • /
    • 2017
  • The aim of this work was to evaluate the dielectric properties of impregnated and activated palm kernel shells (PKSs) samples using two activating agents, potassium carbonate ($K_2CO_3$) and sodium hydroxide (NaOH), at three impregnation ratios. The materials were characterized by moisture content, carbon content, ash content, thermal profile and functional groups. The dielectric properties were examined using an open-ended coaxial probe method at various microwave frequencies (1-6 GHz) and temperatures (25, 35, and $45^{\circ}C$). The results show that the dielectric properties varied with frequency, temperature, moisture content, carbon content and mass ratio of the ionic solids. PKSK1.75 (PKS impregnated with $K_2CO_3$ at a mass ratio of 1.75) and PKSN1.5 (PKS impregnated with NaOH at a mass ratio of 1.5) exhibited a high loss tangent ($tan{\delta}$) indicating the effectiveness of these materials to be heated by microwaves. $K_2CO_3$ and NaOH can act as a microwave absorber to enhance the efficiency of microwave heating for low loss PKSs. Materials with a high moisture content exhibit a high loss tangent but low penetration depth. The interplay of multiple operating frequencies is suggested to promote better microwave heating by considering the changes in the materials characteristics.

저속열분해를 통한 바이오매스 부산물의 바이오촤 특성 비교 분석 (Comparision of Biochar Properties From Biomass produced by Slow Pyrolysis)

  • 박진제;이용운;류창국;강기섭;양원;정진호;현승훈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.69-72
    • /
    • 2013
  • This study investigates the characteristics of biochar by slow pyrolysis at $500^{\circ}C$ for various biomass residues. Six biomass materials were tested: Tree bark, Tree stem, bagasse, cocopeat, paddy straw and palm kernel shell. In the biochar yield, the effect of ash in the raw biomass was significant for paddy straw. Excluding the ash content, the timber bark, bagasse and paddy straw had a similar biochar yield of 26-29 wt.%. Tree stem and bagasse had well developed pores in a wide size range and large surface area over $200m^2/g$. Cocopeat and PKS has significantly higher biochar yield due to the increased content of lignin, but the development of intra-particle pores and microscopic surface area was very poor. The elemental composition, pH and other properties of the biochar samples were also compared.

  • PDF

오일팜 바이오매스의 자원화 연구 I - 오일팜 바이오매스의 열분해 특성 - (Study of Oil Palm Biomass Resources (Part 1) - Characteristics of Thermal Decomposition of Oil Palm Biomass -)

  • 성용주;김철환;조후승;심성웅;이경선;조인준;김세빈
    • 펄프종이기술
    • /
    • 제45권1호
    • /
    • pp.13-20
    • /
    • 2013
  • In this study, oil palm biomass such as empty fruit bunch (EFP) and palm kernel shell (PKS) was used as raw materials for making pellets. EFB and PKS are valuable lignocellulosic biomass that can be used for various purposes. If EFB and PKS are used as alternative raw materials for making pellets instead of wood, wood could be saved for making pulps or other value-added products. In order to explore their combustion characteristics, EFB and PKS were analyzed using thermal gravimetric analyzer (TGA) with ultimate and proximate analyses. From the TGA results, thermal decomposition of EFB and PKS occurred in the range of 280 to $400^{\circ}C$ through devolatilization and combustion of fixed carbon. After $400^{\circ}C$, their combustion were stabilized with combustion of residual lignin and char. PKS contained more fixed carbons and less ash contents than EFB, which indicated that PKS could be more active in combustion than EFB.

오일팜 바이오매스의 자원화 연구 II - 오일팜 바이오매스의 펠릿 제조 특성 - (Study of Oil Palm Biomass Resources (Part 2) - Manufacturing Characteristics of Pellets Using Oil Palm Biomass-)

  • 성용주;김철환;조후승;김성호;심성웅;임수진;이지영;김세빈
    • 펄프종이기술
    • /
    • 제45권1호
    • /
    • pp.42-51
    • /
    • 2013
  • In this study, oil palm biomass such as empty fruit bunch (EFB) and palm kernel shell (PKS) was used as raw materials for making pellets. Hardwood sawdusts were also mixed with EFB and PKS for making pellets. For improving a bad forming behavior in a pelletizer, 1 to 3 per cent of corn starch based on oven-dried weight biomass was added. The starch contributed to the decrease of dust generation in addition to the improvement of forming capability during pellet forming. Heating values of every pellets made of EFB and PKS were higher than 4,300 kcal/kg for the first grade pellet, irrespective of addition of sawdusts. However, the pellets made of EFB and PKS had ash contents over 3 per cent, which made it impossible to be applied for home use. Instead, they could be applied for industrial use. For studying their combustion characteristics, the pellets from the mixtures of EFB, PKS and sawdusts were analyzed using thermal gravimetric analyzer (TGA). From the TGA results, thermal decomposition of EFB and PKS occurred following three including endothermic reaction and dehydration, devolatilization of the major chemical components, and finally combustion of residual lignin and char.

반탄화 공정 변화에 따른 바이오매스 연료의 특성 연구 (Study on the Characteristics of Bio-mass according to Various Process of Torrefaction)

  • 엄태인;채종성;김정규;최수아;오세천
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.375-378
    • /
    • 2014
  • In this study, we carried out torrefaction experiment using PKS(Palm Kernel Shell), and Bagasse as a raw material of oversee of herbaceous biomass and using waste wood and logging residue as a raw material of domestic of woody biomass. And then, by analyzing the physical & chemical properties, we investigated the characteristics as a fuel. By using the result of thermo gravimetric analysis, the biomass residue was torrefied for 30 minutes at a temperature range of $250-350^{\circ}C$ in anaerobic condition. As a result, torrefied materials of moisture content are lower than raw, but of fixed carbon, calorific value and ash are higher than raw.

  • PDF

오일팜 바이오매스의 자원화 연구 IV - 반탄화된 오일팜 바이오매스의 펠릿 성형 특성 연구 - (Study of Oil Palm Biomass Resources (Part 4) Study of Pelletization of Torrefied Oil Palm Biomass -)

  • 성용주;김철환;이지영;조후승;남혜경;박형훈;권솔;김세빈
    • 펄프종이기술
    • /
    • 제47권1호
    • /
    • pp.24-34
    • /
    • 2015
  • Domestic companies supplying electricity must increase obligatory duty to use renewable energy annually. If not met with obligatory allotment, the electricity-supply companies must pay RPS (Renewable Portfolio Standards) penalty. Although the power plants using a pulverizing coal firing boiler could co-fire up to around 3 per cent with wood pellets mixed in with coal feedstock without any major equipment revamps, they recorded only about 60 per cent fulfillment of RPS. Consequently, USD 46 million of RPS penalty was imposed on the six power supplying subsidiaries of GENCOs in 2014. One of the solutions to reduce the RPS penalty is that the power supply companies adopt the co-firing of torrefied lignocellulosic biomass in coal plants, which may contribute to the use of over 30 per cent of torrefied biomass mixed with bituminous coals. Extra binder was required to form pellets using torrefied biomass such as wood chips, PKS (Palm Kernel Shell) and EFB (Empty Fruit Bunch). Instead of corn starch, 30, 50 and 70 per cent of Larix saw dusts were respectively added to the torrefied feedstocks such as Pinus densiflora chips, PKS and EFB. The addition of saw dusts led to the decrease of the calorific values of the pellets but the forming ability of the pelletizer was exceedingly improved. Another advantage from the addition of saw dusts stemmed from the reduction of ash contents of the pellets. Finally, it was confirmed that torrefied oil palm biomass such as PKS and EFB could be valuable feedstocks in making pellets through improved binding ability.