• Title/Summary/Keyword: paired-pulse inhibition

Search Result 4, Processing Time 0.018 seconds

ELECTROPHYSIOLOGICAL CHARACTERISTICS OF GABAERGIC INHIBITION IN THE HIPPOCAMPAL CA1 OF THE RAT IN VIVO (생체내 흰쥐 해마 CA1 세포에서 가바성 억제에 대한 전기생리학 특성)

  • Choi, Byung-Ju;Cho, Jin-Hwa;Kim, Young-Jin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.1
    • /
    • pp.7-14
    • /
    • 2000
  • Inhibitory cells are critically involved in shaping normal hippocampal function and are thought to be important elements in the development of hippocampal pathologies. The present study was carried out in hippocampal CA1 area in vivo to compare with hippocampal slice studies. Intracellular and extracellular recordings with or without bicuculline electrodes were obtained in the intact brain of anesthetized rats, and cells were intracellularty labelled with neurobiotin. Electrical stimulation of fimbria-fornix resulted in an initial short-latency population spike. In the presence of $10{\mu}M$ bicuculline, orthodromic stimulation resulted in bursts of population spikes. The amplitude of population spikes in the CA1 region increased with stimulus intensity, as did the number of population spikes when the field recording electrode contained $10{\mu}M$ bicuculline. We measured the level of excitability in the CA1 area, using a paired-pulse stimulus paradigm to evoke population spikes. Population spikes showed strong paired-pulse inhibition at short interstimulus intervals. Burst afterdischarges up to 400 ms were observed after paired-pulse stimulus. These result suggest that hippocampal CA1 inhibitory interneurons can affect the excitability of pyramidal neurons that can not be appreciated in conventional in vitro preparation.

  • PDF

Changes of CA1 Excitability in Rats after Prenatal Methylazoxymethanol Treatment

  • Jang, Sung-Young;Choi, In-Sun;Cho, Jin-Hwa;Jang, Il-Sung;Lee, Maan-Gee;Choi, Byung-Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.1
    • /
    • pp.13-17
    • /
    • 2006
  • Experimentally induced cortical disorganization exhibits many anatomical features which are characteristic of cortical malformations in children with early-onset epilepsy. We used an immunocytochemical technique and extracellular field potential recordings from the dorsal hippocampus to determine whether the excitability of the CA1 pyramidal cells was enhanced in rats with exnerimentallv induced hippocampal dysplasia. Compared with control rats, the MAM-treated rats displayed a decrease of paired pulse inhibition. When $GABA_A$ receptor antagonists were blocked with $10{\mu}M$ bicuculline the amplitude of the second population spike of the MAM-treated of rats was similar to that of the first population spike, as was in the control rats. The MAM-treated rats had fewer somatostatin and parvalbumin-immunoreactive neurons than the control rats. These results suggest that the enhanced neuronal responsiveness of the in vivo recording of the CA1 in this animal model may involve a reduction of CA1 inhibition.

Effects of Phenytoin and Diazepam on the Seizure Activity in the Cortical Dysplasia Animal Models

  • Kim, Si-Hyung;Choi, In-Sun;Cho, Jin-Hwa;Park, Eun-Ju;Jang, Il-Sung;Choi, Byung-Ju;Kim, Hyun-Jung;Kim, Young-Jin;Nam, Soon-Hyeun
    • International Journal of Oral Biology
    • /
    • v.31 no.2
    • /
    • pp.33-43
    • /
    • 2006
  • Dysplasia-associated seizure disorders are markedly resistant to pharmacological intervention. Relatively little research has been conducted studying the effects of antiepileptic drugs(AEDs)on seizure activity in a rat model of dysplasia. We have used rats exposed to methylazoxymethanol acetate(MAM) in utero, an animal model featuring nodular heterotopia, to investigate the effects of AEDs in the dysplastic brain. Pilocarpine was used to induce acute seizure in MAM-exposed and age-matched vehicle-injected control animals. Field potential recordings were used to monitor amplitude and numbers of population spikes, and paired pulse inhibition in response to stimulation of commissural pathway. Two commonly used AEDs were tested: diazepam 5, 2.5 mg/kg; phenytoin 40, 60 mg/kg. Diazepam(DZP) and phenytoin(PHT) reduced the amplitude of population spike in control and MAM-exposed rats. However, the amplitude of population spike was nearly eliminated in control rats as compared to the MAM-exposed rats. Pharmaco-resistance was tested by measuring seizure latencies in awake rats after pilocarpine administration(320 mg/kg, i.p.) with and without pretreatment with AEDs. Pre-treatment with PHT 60 mg prolonged seizure latency in control rats, but not in MAM-exposed animals. The main findings of this study are that acute seizures initiated in MAM-exposed rats are relatively resistant to standard AEDs assessed in vivo. These data suggest that animal model with cortical dysplasia can be used to screen the effects of potential AEDs.

Effects of Ethosuximide on the Pilocarpine Induced Seizure in Rat Model of Neuronal Migration Disorder

  • Kim, Byung-Kon;Choi, In-Sun;Cho, Jin-Hwa;Jang, Il-Sung;Lee, Maan-Gee;Choi, Byung-Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.5
    • /
    • pp.235-242
    • /
    • 2006
  • Cortical malformation-associated epileptic seizures are resistant to conventional anticonvulsant drugs. Relatively little research has been conducted on the effects of antiepileptic drugs (AEDs) on seizure activity in a rat model of dysplasia. We have used rats exposed to methylazoxymethanol acetate (MAM) in utero, an animal model featuring nodular heterotopia, to investigate the effects of ethosuximide (ETX) in the dysplastic brain. Pilocarpine was used to induce acute seizure in MAM-exposed and age-matched vehicle-injected control animals. Field potential recordings were used to monitor the amplitude and number of population spikes, and paired pulse inhibition in response to stimulation of the commissural pathway. Pharmaco-resistance was tested by measuring seizure latencies after pilocarpine administration (320 mg/kg, Lp.) with and without pre-treatment with ETX. Pre-treatment with 300 mg of ETX significantly prolonged the latency to the status epilepticus (SE) in both control and MAM-treated groups. Pre-treatment with ETX 100mg and ETX 200 mg had little effect in MAMexposed rats. However, ETX 200 mg prolonged the latency to the SE in control groups. Spontaneous field potential and secondary after-discharges were higher for MAM-treated rat in comparison with control rats injects with ETX. The main findings of this study are that acute seizures initiated in MAM-exposed rats are relatively resistant to standard ETX assessed in vivo. These data suggest that ETX do not prolong seizure latencies in MAM-rats exposed to pilocarpine.