• Title/Summary/Keyword: pad cooling systems

Search Result 19, Processing Time 0.026 seconds

Study on the Lubricant Flow Behaviors in the Wet Clutch Pack System of Dual Clutch Transmission (습식 DCT(Dual Clutch Transmission) 클러치 팩 내부에서의 체결 동작에 따른 변속기유 거동 연구)

  • Kim, WooJung;Lee, SangHo;Jang, Siyoul
    • Tribology and Lubricants
    • /
    • v.33 no.3
    • /
    • pp.85-91
    • /
    • 2017
  • This work studies the flow behaviors in the gap between the friction pad and separator in wet-clutch systems. The fluid volume of the lubricant is modeled using the entire system of wet-clutch pack of a dual clutch transmission that has larger outer radius of odd gear shifts and smaller inner radius of even gear shifts. Flow behaviors in the gap of the clutch pad are computed using the gear shift modes that consider the real relative velocities between the friction pad and separator. Flow behaviors in the gap of the disengaged clutch pad are mainly investigated for the wet-clutch system, whereas the engaged clutch pad is modeled with no fluid rate through the contacting surfaces. The developed hydrodynamic fluid pressures and velocity fields in the clutch pad gap are computed to obtain the relevant information for managing flow rates in wet-clutch packs under dual operating conditions during gear shifts. These hydrodynamic pressures and velocity fields are compared on the basis of each gear level and gap location, which is necessary to determine the effects of groove patterns on the friction pad. Shear stresses in the gap locations are also computed on the basis of the gear level for the inner and outer clutch pads. The computed results are compared and used for the design of cooling capacity against frictional heat generation in wet-clutch pack systems.

Effects of various cooling methods and drinking water temperatures on reproductive performance and behavior in heat stressed sows

  • Habeeb, Tajudeen;Joseph, Moturi;Abdolreza, Hosseindoust;SangHun, Ha;Jun Young, Mun;YoHan, Choi;SooJin, Sa;JinSoo, Kim
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.782-791
    • /
    • 2022
  • The purpose of this study is to evaluate the effects of multiple cooling systems and different drinking water temperatures (DWT) on the performance of sows and their hair cortisol levels during heat stress. In this study, the effect of four different cooling systems: air conditioner (AC), cooling pad (CP), snout cooling (SC), and mist spray (MS), and two DWT, namely low water temperature (LWT) and high water temperature (HWT) on 48 multiparous sows (Landrace × Yorkshire; 242.84 ± 2.89 kg) was tested. The experiment is based on the use of eight replicas during a 21-days test. Different behaviors were recorded under different cooling treatments in sows. As a result, behaviors such as drinking, standing, and position change were found to be lower in sows under the AC and CP treatments than in those under the SC and MS treatments. Lying behavior increased under the AC and CP systems as compared with that under the SC and MS, systems. The average daily feed intake (ADFI) in sows and weight at weaning in piglets was higher under the AC, CP, and LWT treatments than under the SC, MS and HWT treatments. Sows subjected to SC and MS treatment showed higher hair cortisol levels, rectal temperature, and respiratory rate during lactation than those under AC and CP treatments. Hair cortisol levels, rectal temperature, and respiratory rate were also higher under the HWT than under the LWT treatment. As per the results of this study, the LWT has no significant effect on any of the behavioral factors. Taken together, the use of AC and CP cooling treatment is highly recommended to improve the behavior and to reduce the stress levels in lactating sows.

Effect of Different Cooling System on Performance and Hair Cortisol on Sows under Heat Stress (고온기 분만사 내 냉방 시설의 종류가 모돈의 번식성적 및 스트레스 지표에 미치는 영향)

  • Oh, Seung-Min;Choi, Yo-Han;Kim, Dong-Woo;Ha, Sang-Hun;Kim, Jo-Eun;Jung, Hyun-Jung;Kim, Jin-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.160-168
    • /
    • 2021
  • This study was undertaken to determine the effect of different cooling systems on the performance and hair cortisol of sows under heat stress. During a 21-day experiment, a total of 40 multiparous sows (Landrace×Yorkshire; 242.84±2.89 kg) were allotted to 4 treatments, each with 10 replicates (1 sow per pen). The experimental treatments were CP (Cooling pad), AC (Air conditioner), SC (Snout cooling), and MS (Mist spray). We observed an increase in the average daily feed intake during lactation (p<0.05) in the CP and AC treatment groups. AC treatment had the highest (p<0.05) and SC treatment had the lowest (p<0.05) piglet weight at weaning. During lactation, sows administered SC and MS treatments had higher (p<0.05) hair cortisol accumulation, as compared with the AC and CP treatments. Hair cortisol accumulation in piglets during lactation was highest with MS treatment (p<0.05), and lowest after CP treatment (p<0.05). MS treatment had the highest (p<0.05), and AC treatment had the lowest (p<0.05) respiratory rate and rectal temperature during lactation. In conclusion, our results indicate that a cooling pad and air conditioning cooling system increases the productivity of a sow, as compared to snout cooling and mist spray cooling systems.

Experimental Study on the Two Phase Thermosyphone Loop with Parallel Connected Multiple Evaporators under Partial Load and Low Temperature Operating Condition (병렬 연결된 다중 증발기 구조 2상 유동 순환형 열사이폰의 부분부하 및 저온운전 특성에 관한 실험적 연구)

  • Kang In-Seak;Choi Dong-Kyu;Kim Taig-young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1051-1059
    • /
    • 2004
  • Two phase thermosyphone loop for electronics cooling are designed and manufactured to test its performance under the partial load and low environment temperature conditions. The thermosyphone device has six evaporators connected parallel for the purpose of cooling six power amplifier units (PAU) independently. The heater modules for simulating PAUs are adhered with thermal pad to the evaporator plates to reduce the contact resistance. There are unbalanced distributions of liquid refrigerant in the differently heated evaporators due to the vapor pressure difference. To reduce the vapor pressure differences caused by partial heating, two evaporators are connected each other using the copper tube. The pressure regulation tube successfully reduces these unbalances and it is good candidates for a field distributed systems. Under the low environment temperature operating condition, such as $-30^{\circ}C$, there may be unexpected subcooling in condenser. It leads the very low saturation pressure, and under this condition there exists explosive boiling in evaporator. The abrupt pressure rise due to the explosive boiling inhibits the supplement of liquid refrigerant to the evaporator for continuous cooling. Finally the cooling cycle will be broken. For the normal circulation of refrigerant there may be an optimum cooling air flow rate in condenser to adjust the given heat load.

The Effect on Attention of College Students by Epidermal Cooling in Posterior and Lateral of Upper Cervix (경추부 후면 및 측면 피부 냉각 작용이 대학생의 주의력에 미치는 영향)

  • Chang, Ji Hong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.328-334
    • /
    • 2022
  • The process that one may consciously focuses on necessary stimulation among tremendous amount of stimulation through human sensory systems is called attention in psychology. It is known that the attention can be affected by many factors such as room temperatures, humidity level, etc. In the field of sports science, ice packs are widely used for recovery from exercise fatigue providing fast heat transfer by conduction. However, the effect on attention by so-called iced-pack-cooling has not been tested. This research focuses on the attention levels when one is provided with a special cooling pad on their dorsal and lateral cervices. 40 subjects were divided into four groups and their attention level was evaluated based on the exposure conditions of combinations in reading and light walking with and without the cooling pad. The Frankfruter Aufmerksamkeits-Inventar, FAIR was used to evaluate the attention levels; the performance index, quality index, and continuity index consist of the FAIR test indicating the selectiveness of the attention, correctness of the attention, and maintaining term of the attention, respectively. Analysis of variance was carried out for those variables and post-hoc if applicable. When visual attention is constantly used for reading and studying, application of conductive heat transfer by the cooling pads is significantly helpful for improvement in selectiveness of the attention and maintaining terms of the attention levels. Also, light walking yielded improvement in selectiveness of the attention and maintaining terms of the attention levels; however one should presupposedly consider the loss of reading time.

Effects of Season, Housing and Physiological Stage on Drinking and Other Related Behavior of Dairy Cows (Bos taurus)

  • Lainez, Marielena Moncada;Hsia, Liang Chou
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1417-1429
    • /
    • 2004
  • The objective of the paper was to study the drinking and other related behavior of dairy cows (Bos taurus). There were 142 Holstein dairy cows observed and compared in this study. The experiment was designed on the basis of two different housing systems (wet pad with forced ventilation cooling house and open house); two different seasons (winter and summer); four different stages (high milk yielding cows, low milk yielding cows, dry cows, and heifers); and grouping (home and visitor animals). All cows had free access to water. Dairy cows spent 13.8 min/day drinking in wet-pad house and 11.7 min/day in open house. owever, there was no significant difference in the duration of water drinking between these two housing systems (p>0.05). The water consumption was significantly higher in wet-pad housed animals (68 L/day) than open-housed animals (31.5 L/day) (p<0.05). A significant interaction between housing and grouping (p<0.05) was found. Home and visitor animals spent more time drinking in open house, wet-pad house, respectively. A highly significant interaction was found between housing and drinking time during the day (p<0.001). Animals in open house drank more during the morning (6:00 to 10:00 h), whereas wet-pad housed animals drank in the afternoon (14:00 to 15:00 h) and evening (18:00 to 20:00 h). The average time a cow spent in drinking in summer was not ignificantly different from that of drinking in winter. However, the water intake was significantly higher in summer (61.9 L/day) than in winter (38.6 L/day) (p<0.05). Drinking activity showed a highly significant interaction between season and physiological stage (p<0.01). High milk yield cows spent more time drinking in summer than in winter, whereas cows in all other stages followed the opposite drinking pattern. Grouping exchange did not influence the drinking behavior of dairy cows in either season (p>0.05); both home and visitor animals spent almost the same time in drinking water. A strong significant interaction between season and time during the day was found(p<0.01), suggesting that animal's high drinking frequency occurred during the daytime for both seasons, with a peak midday in winter and two peaks at 10:00 h in the morning and 19:00 h in summer. Thus, drinking behavior was associated with the cooler time of day in summer and with the warmer hours of day in winter. High and low milk yielding cows and heifers spent 15.3 min/day, 14.3 min/day, and 12.8 min/day, respectively, in water drinking activity, but there was no significant difference among them (p>0.05). There was, however, a significant difference in water drinking activity found in dry cows, which spent less time in drinking at 8.2 min/day (p<0.05).

Axisymmetric Temperature Analysis of Ventilated Disk using Equivalent Parameters (등가상수를 이용한 벤트레이트 디스크의 축대칭 온도 해석)

  • 여태인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.137-142
    • /
    • 2003
  • In automotive brake systems, the frictional heat generated can cause high temperature at the interface of rotor and pad which may deteriorate the material properties of the sliding parts and can result in brake fade. Conventionally, a pie-shaped 3-dimentional model is adopted to calculate temperature of ventilated disk using finite element method. To overcome the difficulties in preparing 3D finite element model and reduce the computational time required, the ventilated rotor is to be analyzed, in this study, as an axisymmetric finite element model in which, taking into considerations the effects of cooling passages, a homogenization technique is used to obtain the equivalent thermal properties and boundary conditions for the elements placed at the vent holes. Numerical tests show the proposed procedure can be successfully applied in practice, replacing 3-dimensional thermal analysis of ventilated disk.

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

Study for Characteristic of Frictional Heat Transfer in Rotating Brake System (회전을 고려한 브레이크 디스크의 마찰열전달 연구)

  • Nam, Jiwoo;Ryou, Hong Sun;Cho, Seong Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.817-822
    • /
    • 2017
  • The braking system is one of the most important components in vehicles and machines. It must exert a reliable braking force when they are brought to a halt. Generally, frictional heat is generated by converting kinetic energy into heat energy through friction. As the kinetic energy is converted into heat energy, high temperature heat is generated which affects the mechanical behavior of the braking system. Frictional heat affects the thermal expansion and friction coefficient of the brake system. If the temperature is not controlled, the brake performance will be decreased. Therefore, it is important to predict and control the heat generation of the brake. Various numerical analysis studies have been carried out to predict the frictional heat, but they assumed the existence of boundary conditions in the numerical analysis to simulate the frictional heat, because the simulation of frictional heat is difficult and time consuming. The results were based on the assumption that the frictional heat is different from the actual temperature distribution in a rotating brake system. Therefore, the reliability of the cooling effect or thermal stress using the results of these studies is insufficient. In order to overcome these limitations and establish a simulation procedure to predict the frictional heat, this study directly simulates the frictional heat generation by using a thermal-structure coupling element. In this study, we analyzed the thermo-mechanical behavior of a brake model, in order to investigate the thermal characteristics of brake systems by using the Finite Element method (FEM). This study suggests the necessity to directly simulate the frictional heating and it is hoped that it can provide the necessary information for simulations.