• Title/Summary/Keyword: packing factor

Search Result 128, Processing Time 0.026 seconds

Interaction Factors and Response Surface Analysis on the Factors Influencing the Flow Front Temperature at Metal Injection Mold (금속사출 유동선단온도에 영향을 미치는 주요 인자들의 상호관계 및 반응표면분석)

  • Kim, Myoung-Ho;Yoon, Hi-Seak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.248-255
    • /
    • 2013
  • The objective of this study is to optimize the Metal Injection Molding(MIM) process with design of experiments(DOE) and numerical analysis. To derive the optimal process condition, experiment or numerical analysis was performed under various process conditions. To analyze the interaction among influential factors contributing to the temperature at flow front and response surface in MIM, both central point and axial point were added to the full factorial design with 2 levels and 5 factors and then their impacts on response variable in 43 experimental conditions were analyzed and the significance was evaluated. As a result, sprue, runner, and gate were completely filled in about 0.247 seconds after injection, the front part of the green body was filled in about 0.3344 seconds, the green body except gate, etc changed to almost solid state in about 3.29 seconds, the Packinging pressure was completed in about 6.29 seconds, and the green body inside and outside and sprue, etc became solid in 13.2 seconds. The impact of individual or reciprocal action of factors on the temperature at flow front was analyzed through regular probability, test statistics, main effect, and interaction effect. As a result, of a total of 31 combinations of factors, 9 unit factors and reciprocal actions were significant, and the screening was also possible. A proper regression equation was drawn with regression analysis and response surface design on the response variable of temperature at flow front, and the applicability could be verified.

Prediction of the % Hardness Curve of Cellulose Acetate Mono Filters (셀룰로오스 아세테이트 모노 필터의 경도 예측)

  • Kim Jong-Yeol;Kim Soo-Ho;Shin Chang-Ho;Park Jin-Won;Lim Sung-Jin;Kim Chung-Ryul;Rhee Moon-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.28 no.1
    • /
    • pp.43-50
    • /
    • 2006
  • The objective of the present study is to induct the regression equation for the hardness prediction of cellulose acetate filter which was manufactured by the domestic cellulose acetate tow manufacturer. As a result of our study, the hardness of filter was increased with increasing the plasticizer content and packing density as major factors affecting to the filter hardness. As a result which was obtained by the three dimensional response surface methodology in STATISTIC A program, the hardness prediction value well fitted with experiment result on the high plasticizer content. To make up for the this equation, the new modified fraction of solid factors which was contained the mono denier factor was introduced to the hardness prediction equation, and this third regression equation which was sufficient for the wide plasticizer content, was obtained by the three dimensional response surface methodology in STATISTICA. This results indicated that the third regression equation which was obtained this study was applicable for the hardness prediction of cellulose acetate filter which was manufactured by the domestic cellulose acetate tow manufacturer.

A Study on Establishment of Similar Expousre Groups(SEGs) for Chemical and Biological Risk Factors in Farm Work (농작업시 발생하는 화학적 및 생물학적 위험요인에 대한 유사노출작업군 설정 연구)

  • Lee, Minji;Sin, Sojung;Kim, Hyocher;Heo, Jinyoung;Ahn, Minji;Kim, Kyungran;Kim, Kyungsu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.3
    • /
    • pp.292-298
    • /
    • 2020
  • Objectives: The aim of this research is to establish Similar Exposure Groups (SEGs) for chemical and biological risk factors that occur in farm work involving 24 tasks among 15 crops. Methods: To categorize SEGs, work type, work environment, and similar tasks for each crop were considered. After confirming the chemical risk factors (pesticides, inorganic dust-total dust and PM10, ammonia, and hydrogen sulfide) and biological factors (organic dust-total dust and PM10, and endotoxins) that occur in the crops and tasks, similar crops and tasks were selected as SEGs. Results: Among chemical risk factors, pesticides was selected for the SEGs, which was categorized by open field, greenhouse, fruit, and specialty crops. For inorganic dust, open field (plowing harrowing, seedling, planting, harvest, and sorting and packing) and specialty crops (plowing harrowing, seedling, planting, and harvest) were selected as SEGs. For ammonia and hydrogen sulfide, livestock (preparation of farm, management of nursery bed, feeding, shipment and manure treatment) were selected as SEGs. For biological risk factors such as organic dust (total dust, PM10) and endotoxins, open field (manure application), greenhouse (plowing harrowing, planting, manure application, and harvest), fruit (manure application), specialty crops (manure application, making furrows, mixing mushroom media, harvest, and sorting and packing), and livestock (preparation of farm, maintaining poultry litter, feeding, shipment and manure treatment) were selected as SEGs. Conclusions: To establish similar exposure groups in agriculture, it is important that the characteristics of each hazard factor are categorized by identifying risk factors occurring by tasks.

The Characteristics of Viscosity Behavior of EMC for Semi-conductor Encapsulant -The Prediction of Viscosity by Mooney Equation- (반도체 봉지제용 EMC의 점도거동 특성 연구 -Mooney식을 이용한 점도예측-)

  • Kim, In Beom;Bae, Doo Han;Lee, Myung Cheon;Lee, Euy Soo;Yun, Hyo Chang;Lim, Jong Chan
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.949-953
    • /
    • 1999
  • Because epoxy molding compound(EMC) for semi-conductor encapsulants contains high concentrations of fillers, its flow behaviors are affected much by the concentrations and properties of those fillers. This paper reports the effects of a filler concentration, shape, size, and size distributions on the viscosity behavior of EMC(epoxy/silica). In addition, the prediction of viscosity behavior was performed using the Mooney equation. The maximum packing volume in the Mooney equation was calculated by Ouchiyama's packing model and Taguchi's optimization method, while the shpae factor was determined by fitting the experimental data. The results showed that the Mooney equation predicted the viscosity behavior of EMC very well.

  • PDF

Physicochemical Properties of Early Cultivar of Satsuma mandarin Sampled at Different Harvested Dates in Cheju (수확시기별 조생온주밀감의 품질특성)

  • Yang, Sang-Ho;Yang, Young-Tack;Jwa, Chang-Sook;Koh, Jeong-Sam
    • Applied Biological Chemistry
    • /
    • v.41 no.2
    • /
    • pp.141-146
    • /
    • 1998
  • In order to determine the optimmum harvest time of Citrus unshiu Marc. var. miyagawa and C. unshiu Marc. var. okitsu produced in Cheju, citrus fruits sampled at packing houses or harvested directly on citrus tree in south and north area of Cheju were analyzed. The fruits were grown in size till middle of October, and soluble solids were increased continuously after that. The fruits size were different by positional directions on the tree, the quality of citrus fruits in central southern positions on the tree was good for fresh fruit consumptions. Compared with only the quality of citrus fruits as a factor of soluble solids, total sugar, pH, and color index, the optimum harvest time were supposed to be reasonable at late of November for C. unshiu Marc. var. okitsu, and at early of December for C. unshiu Marc. var. miyagawa. The results obtained from citrus fruits sampled at packing houses were supposed to be not suitable for determing the optimum harvest time, because of storage after harvest at ordinary harvesting time.

  • PDF

Molecular Simulation Studies for Penetrable-Sphere Model: II. Collision Properties (침투성 구형 모델에 관한 분자 전산 연구: II. 충돌 특성)

  • Kim, Chun-Ho;Suh, Soong-Hyuck
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.513-519
    • /
    • 2011
  • Molecular simulations via the molecular dynamics method have been carried out to investigate the dynamic collision properties of penetrable-sphere model fluids. The collision frequencies, the mean free paths, the angle distributions of the hard-type reflection and the soft-type penetration, and the effective packing fractions are computed over a wide range of the packing fraction ${\phi}$ and the repulsive energy ${\varepsilon}^*$. The soft-type collisions are dominated for lower repulsive energy systems, while the hardtype collisions for higher repulsive energy systems. Very interestingly, the ratio of the soft-type (or, the hard-type) collision frequency to the total collision frequency is directly related with the Boltzmann factor of acceptance (or rejection) probabilities in the canonical ensemble Monte Carlo calculations. Such dynamic collision properties are shown to be restricted for highly repulsive and dense systems of ${\varepsilon}^*{\geqq}3.0 $and ${\phi}{\geqq}0.7$, indicating the cluster forming structures in the penetrable-sphere model.

Effects of Injection Molding Parameters and their Interactions on Mechanical Properties of PMMA/PC Blend

  • Hoang, Van Thanh;Luu, Duc Binh;Toan Do, Le Hung;Tran, Ngoc Hai;Nguyen, Pham The Nhan;Tran, Minh Sang;Tran, Minh Thong
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.650-654
    • /
    • 2020
  • A combination of Polycarbonate (PC) material and Polymethylmethacrylate (PMMA), fabricated using an injection molding machine, has been investigated to determine its advantages, as studied in Ref. 1). This paper aims to investigate the optimization of PMMA/PC blend for both tensile yield strength and impact strength. Furthermore, interaction effects of process conditions on mechanical properties including tensile yield strength and impact strength of PMMA/PC blend by injection molding process are interpreted in this study. Tensile and impact specimens are designed following ASTM, type V, and are fabricated by injection molding process. The processing conditions such as melt temperature, mold temperature, packing pressure, and cooling time are applied; each factor has three levels. As a result, in comparison with optimization of separated responses, mechanical properties of PMMA/PC are found to decrease when optimizing both tensile and impact strengths simultaneously. The melt temperature is found to be the most significant interaction parameter with the mold temperature and packing pressure. In addition, there is more interaction between the mold temperature and cooling time. This investigation provides a useful understanding of the control of injection molding processing of polymer blends in optical application.

Analysis on Thermal Environment of Marathon Course in 2011 Daegu World Championship in Athletics (대구 세계육상선수권대회 마라톤 구간의 열환경변화분석)

  • Baek, Sang-Hun;Oh, Sang-Hak;Jung, Yong-Hun;Jung, Eung-Ho
    • Journal of Environmental Science International
    • /
    • v.20 no.7
    • /
    • pp.881-890
    • /
    • 2011
  • In this study, thermal environment changes for a marathon course of IAAF World Championship, Daegu 2011 were modeled to provide improvements of thermal environment, so that runners could have the maximum condition and citizens pleasant streets. The three biggest size of intersections were selected for the study. Envi-met, 3G microclimate model, were used for a thermal environment analysis and three different cases - present status, planting roadside tree scenario, and roof-garden scenario - were compared. The followings are the results of the study. 1. The highest thermal distribution were shown at 1 p.m., but there was no significant difference between a thermal distribution at 1 p.m. and that at 5 p.m. since a heat flux from buildings affects thermal distributions rather than insolation does. 2. Tree planting or adding environmental friendly factors might lead a temperature drop effect, but the effect was not significant for areas covered with impermeability packing materials such as concrete or asphalt (especally, for Site case 2) 3. The combination of tree planting and adding environmental friendly factors also brought a temperature drop effect (Site 1 and 2) and this case showed even better result if green spaces (especially, parks) were closed.

Color and Carotenoid Changes During Storage of Dried Red Pepper (건조(乾燥) 고추 저장(貯藏) 중(中)의 변색(變色)에 관(關)한 연구(硏究))

  • Kim, Dong-Youn;Rhee, Chong-Ouk
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.53-58
    • /
    • 1980
  • The effects of water activity, oxygen, light and storage temperature on the color degradation of dried red pepper were investigated during storage. Some packing materials were used for improving the storage life of red pepper by minimizing those factors. The results obtained were summarized as follows: 1. The critical water activity to the capsanthin of red pepper was 0.75. 2. Color degradation of dried red pepper was the most severe by U.V. light among 100 watt infra-red lamp, 15 watt U.V. lamp and 200 watt glow lamp. 3. Effect of light was not significant in the presence of nitrogen, Main factor of color degradation of red pepper in storage appeared spontaneous oxidation by the existence of oxygen. 4. The capsanthin content and the lightness as hunter value in powder type storage of red pepper was higher than that in whole pod type during 3 month's storage. 5. The air and damp-proof packing materials showed better results than polyethylene film packing in capsanthin content and lightness during 3 month's storage.

  • PDF

The safety and efficacy of double microcatheter technique in small and tiny ruptured aneurysms: A single center study

  • Hyeong Kyun Shim;Byung Jou Lee;Chae Heuck Lee;Moon Jun Sohn;Sook Young Shim;Chan Young Choi;Sung Rok Han;Kwang Hyeon Kim;Hae Won Koo
    • Journal of Cerebrovascular and Endovascular Neurosurgery
    • /
    • v.26 no.2
    • /
    • pp.141-151
    • /
    • 2024
  • Objective: Double microcatheter technique (dMC) can be the alternative to Single microcatheter technique (sMC) for challenging cases, but there is lack of studies comparing dMC to sMC especifically for small ruptured aneurysms. Our objective was to compare the safety and efficacy of dMC to sMC in treating small (≤5 mm) and tiny (≤3 mm) ruptured aneurysms. Methods: This study focused on 91 out of 280 patients who had ruptured aneurysms and underwent either single or double microcatheter coil embolization. These patients were treated with either single or double microcatheter coil embolization. We divided the patients into two groups based on the procedural method and evaluated clinical features and outcomes. Subgroup analyses were conducted specifically for tiny aneurysms, comparing the two methods, and within the dMC group, we also examined whether the aneurysm was tiny or not. In addition, univariate logistic regression analysis was performed to assess the impact of coil packing density. Results: The mean values for most outcome measures in the dMC group were higher than those in the sMC group, but these differences did not reach statistical significance (coil packing density, 45.739% vs. 39.943%; procedural complication, 4.17% vs. 11.94%; recanalization, 8.3% vs. 10.45%; discharge discharge modified Rankin Scale (mRS), 1.83 vs. 1.97). The comparison between tiny aneurysms and other sizes within the dMC group did not reveal any significant differences in terms of worse outcomes or increased risk. The only factor that significantly influenced coil packing density in the univariate logistic regression analysis was the size of the aneurysm (OR 0.309, 95% CI 0.169-0.566, p=0.000). Conclusions: The dMC proved to be a safe and viable alternative to the sMC for treating small ruptured aneurysms in challenging cases.