• Title/Summary/Keyword: packet rate control

Search Result 309, Processing Time 0.032 seconds

A New Joint Packet Scheduling/Admission Control Framework for Multi-Service Wireless Networks

  • Long Fei;Feng Gang;Tang Junhua
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.408-416
    • /
    • 2005
  • Quality of service (QoS) provision is an important and indispensable function for multi-service wireless networks. In this paper, we present a new scheduling/admission control frame­work, including an efficient rate-guaranteed opportunistic scheduling (ROS) scheme and a coordinated admission control (ROS­CAC) policy to support statistic QoS guarantee in multi-service wireless networks. Based on our proposed mathematical model, we derive the probability distribution function (PDF) of queue length under ROS and deduce the packet loss rate (PLR) for individual flows. The new admission control policy makes admission decision for a new incoming flow to ensure that the PLR requirements of all flows (including the new flow) are satisfied. The numerical results based on ns-2 simulations demonstrate the effectiveness of the new joint packet scheduling/admission control framework.

Utilizing Multicasts Routers for Reliability in On-Line Games (온라인 게임에서 신뢰성 확보를 위한 멀티캐스트 라우터의 활용)

  • Doo, Gil-Soo;Lee, Kwang-Jae;Seol, Nam-O
    • Journal of Korea Game Society
    • /
    • v.2 no.1
    • /
    • pp.23-29
    • /
    • 2002
  • Multicast protocols are efficient methods of group communication such as video conference, Internet broadcasting and On-Line Game, but they do not support the various transmission protocol services like a reliability guarantee, FTP, or Telnet that TCPs do. The Purpose or this Paper is to find a method to utilize multicast routers can simultaneously transport multicast packets and TCP packets. For multicast network scalability and error recovery the existing SRM(Scalable Reliable Multicast)method has been used. Three packets per TCP transmission control window site are used for transport and an ACK is used for flow control. A CBR(Constant Bit Rate) and a SRM is used for UDP traffic control. Divided on whether a UDP multicast packet and TCP unicast packet is used simultaneously or only a UDP multicast packet transport is used, the multicast receiver with the longest delay is measured on the number of packets and its data receiving rate. It can be seen that the UDP packet and the TCP's IP packet can be simultaneously used in a server router.

  • PDF

A Web-based QoS-guaranteed Traffic Control system (웹 기반의 QoS 보장형 트래픽 제어 시스템)

  • 이명섭;신경철;류명춘;박찬현
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.45-48
    • /
    • 2002
  • This paper presents a QoS-guaranteed traffic control system which supports QoS of realtime packet transmission for the multimedia communication. The traffic control system presented in this paper applies the integrated service model and provides QoS o(packet transmission by means of determining the packet transmission rate with the policy of network manager and the optimal resource allocation according to the end-to-end traffic load. It also provides QoS for the realtime packet transmission through the AWF2Q+ Scheduling algorithm and per-class queuing method.

  • PDF

Closed-loop Feedback Control for Enhancing QoS in Real-time communication Networks

  • Kim, Hyung-Seok;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.40.1-40
    • /
    • 2001
  • In this paper, control theoretic approaches are proposed to guarantee QoS (Quality of Series) such as packet delay and packet loss of real-time traffic in high-speed communication network. Characteristics of variable rate real-time traÆc in communication networks are described. The mathematical model describing networks including source and destination nodes are suggested. By a traffic control mechanism, it is shown that worst-case end-to-end transfer delay of traffic can be controlled and packet loss can be prevented. The simulation shows results of delay control and buer level control to raise QoS in realtime traffic.

  • PDF

A Cost-Effective Rate Control for Streaming Video for Wireless Portable Devices

  • Hong, Youn-Sik;Park, Hee-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.6
    • /
    • pp.1147-1165
    • /
    • 2011
  • We present a simple and cost effective rate control scheme for streaming video over a wireless channel by using the information of mobile devices' buffer level. To prevent buffer fullness and emptiness at receivers, the server should be able to adjust sending rate according to receivers' buffer status. We propose methods to adjust sending rate based on the buffer level and discrete derivative of the buffer occupancy. To be compatible with existing network protocols, we provide methods to adjust sending rate by changing the inter-packet delay (IPD) at the server side. At every round-trip time, adjustments of sending rate are made in order to achieve responsiveness to sudden changes of buffer availabilities. A series of simulations and the prototype system showed that the proposed methods did not cause buffer overflows and it can maintain smoother rate control and react to bandwidth changes promptly.

Congestion Detection and Control Strategies for Multipath Traffic in Wireless Sensor Networks

  • Razzaque, Md. Abdur;Hong, Choong Seon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.465-466
    • /
    • 2009
  • This paper investigates congestion detection and control strategies for multi-path traffic (CDCM) diss emination in lifetime-constrained wireless sensor networks. CDCM jointly exploits packet arrival rate, succ essful packet delivery rate and current buffer status of a node to measure the congestion level. Our objec tive is to develop adaptive traffic rate update policies that can increase the reliability and the network lif etime. Our simulation results show that the proposed CDCM scheme provides with good performance.

Joint Source/Channel Rate Control based on Adaptive Frame Skip for Real-Time Video Transmission (적응형 화면 스킵 기반 실시간 비디오의 소스/채널 통합 부호화율 제어)

  • Lee, Myeong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.4
    • /
    • pp.523-531
    • /
    • 2009
  • In this study, we propose a joint source/channel rate control algorithm for video encoder targeting packet erasure channel. Based on the buffer constraints of video communication systems, encoding rate constraint is presented. After defining source distortion models for coded and skipped video frames and a channel distortion model for packet errors and their propagation, an average distortion model of received video is proposed for a given encoding window. Finally, we define an optimization problem to minimize the average distortion for given channel rates and packet loss rates by controlling spatio-temporal parameters of source video and FEC block sizes. Then, we propose a window-based algorithm to solve the problem in real-time.

  • PDF

A TCP-Friendly Control Method using Neural Network Prediction Algorithm (신경회로망 예측 알고리즘을 적용한 TCP-Friednly 제어 방법)

  • Yoo, Sung-Goo;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.105-107
    • /
    • 2006
  • As internet streaming data increase, transport protocol such as TCP, TGP-Friendly is important to study control transmission rate and share of Internet bandwidth. In this paper, we propose a TCP-Friendly protocol using Neural Network for media delivery over wired Internet which has various traffic size(PTFRC). PTFRC can effectively send streaming data when occur congestion and predict one-step ahead round trip time and packet loss rate. A multi-layer perceptron structure is used as the prediction model, and the Levenberg-Marquardt algorithm is used as a traning algorithm. The performance of the PTFRC was evaluated by the share of Bandwidth and packet loss rate with various protocols.

  • PDF

An Adaptive FEC based Error Control Algorithm for VoIP (VoIP를 위한 적응적 FEC 기반 에러 제어 알고리즘)

  • Choe, Tae-Uk;Jeong, Gi-Dong
    • The KIPS Transactions:PartC
    • /
    • v.9C no.3
    • /
    • pp.375-384
    • /
    • 2002
  • In the current Internet, the QoS of interactive applications is hardly guaranteed because of variable bandwidth, packet loss and delay. Moreover, VoIP which is becoming an important part of the information infra-structure in these days, is susceptible to network packet loss and end-to-end delay. Therefore, it needs error control mechanisms in network level or application level. The FEC-based error control mechanisms are used for interactive audio application such as VoIP. The FEC sends a main information along with redundant information to recover the lost packets and adjusts redundant information depending on network conditions to reduce the bandwidth overhead. However, because most of the error control mechanisms do not consider end-to-end delay but packet loss rate, their performances are poor. In this paper, we propose a new error control algorithm, SCCRP, considering packet loss rate as well as end-to-end delay. Through experiments, we confirm that the SCCRP has a lower packet loss rate and a lower end-to-end delay after reconstruction.

An Enhanced Transmission Mechanism for Supporting Quality of Service in Wireless Multimedia Sensor Networks

  • Cho, DongOk;Koh, JinGwang;Lee, SungKeun
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.65-73
    • /
    • 2017
  • Congestion occurring at wireless sensor networks(WSNs) causes packet delay and packet drop, which directly affects overall QoS(Quality of Service) parameters of network. Network congestion is critical when important data is to be transmitted through network. Thus, it is significantly important to effectively control the congestion. In this paper, new mechanism to guarantee reliable transmission for the important data is proposed by considering the importance of packet, configuring packet priority and utilizing the settings in routing process. Using this mechanism, network condition can be maintained without congestion in a way of making packet routed through various routes. Additionally, congestion control using packet service time, packet inter-arrival time and buffer utilization enables to reduce packet delay and prevent packet drop. Performance for the proposed mechanism was evaluated by simulation. The simulation results indicate that the proposed mechanism results to reduction of packet delay and produces positive influence in terms of packet loss rate and network lifetime. It implies that the proposed mechanism contributes to maintaining the network condition to be efficient.