As the TCP is the protocol designed for the wired network that packet loss probability is very low, because TCP transmitter takes it for granted that the packet loss by the wireless network characteristics is occurred by the network congestion and lowers the transmitter's transmission rate, the performance is degraded. In this article, we suggest the newly improved algorithm using two parameters, the local retransmission time value and the local retransmission critical value to the BS based on the Snoop. This technique adjusts the base stations local retransmission timer effectively according to the wireless link status to recover the wireless packet loss rapidly. We checked that as a result of the suggested algorithm through various simulations, A-Snoop protocol improve more the wireless TCP transmission rate by recovering the packet loss effectively in the wireless link that the continuous packet loss occur than the Snoop protocol.
There are two types of packet loss probabilities used in both the network layer and the physical layer within the wireless transmitter such as a queueing discard probability and transmission loss probability. We analyze these loss performances in order to guarantee Quality of Service (QoS) which is the basic of the future network. The queuing loss probability is caused by a maximum allowable delay time and the transmission loss probability is caused by a wireless channel error. These two types of packet loss probabilities are not easily analyzed due to recursive feedback which, originates as a result at a queueing delay and a number of retransmission attempts. We consider a wireless transmitter to a M/D/1 queueing model. We configurate the model to have a finite-size FIFO buffer in order to analyze the real-time traffic streams. Then we present the approaches used for evaluating the loss probabilities of this M/D/1/K queueing model. To analyze the two types of probabilities which have mutual feedbacks with each other, we drive the solutions recursively. The validity and accuracy of the analysis are confirmed by the computer simulation. From the following solutions, we suggest a minimum of 'a Maximum Allowable Delay Time' for real-time traffic in order to initially guarantee the QoS. Finally, we analyze the required service rate for each type utilizing real-time traffic and we apply our valuable analysis to a N-user's wireless network in order to get the fundamental information (types of supportable real-type traffics, types of supportable QoS, supportable maximum number of users) for network design.
In this paper, an efficient threshold-based filtering (TF) buffer management scheme is proposed. The TF is capable of minimizing the overall loss performance and improving the fairness of buffer usage in a shared buffer packet switch. The TF consists of two mechanisms. One mechanism is to classify the output ports as sctive or inactive by comparing their queue lengths with a dedicated buffer allocation factor. The other mechanism is to filter the arrival packets of inactive output ports when the total queue length exceeds a threshold value. A theoretical queuing model of TF is formulated and resolved for the overall packet loss probability. Computer simulations are used to compare the overall loss performance of TF, dynamic threshold (DT), static threshold (ST) and pushout (PO). We find that TF scheme is more robust against dynamic traffic variations than DT and ST. Also, although the over-all loss performance between TF and PO are close to each other, the implementation of TF is much simpler than the PO.
Journal of Korea Society of Digital Industry and Information Management
/
v.5
no.2
/
pp.141-156
/
2009
As the TCP is the protocol designed for the wired network that packet loss probability is very low, because TCP transmitter takes it for granted that the packet loss by the wireless network characteristics is occurred by the network congestion and lowers the transmitter's transmission rate, the performance is degraded. The Snoop Protocol was designed for the wired network by putting the Snoop agent module on the BS(Base Station) that connect the wire network to the wireless network to complement the TCP problem. The Snoop agent cash the packets being transferred to the wireless terminal and recover the loss by resending locally for the error occurred in the wireless link. The Snoop agent blocks the unnecessary congestion control by preventing the dupack (duplicate acknowledgement)for the retransmitted packet from sending to the sender and hiding the loss in the wireless link from the sender. We evaluated the performance in the wired/wireless network and in various TCP versions using the TCP designed for the wired network and the Snoop designed for the wireless network and evaluated the performance of the wired/wireless hybrid network in the wireless link environment that the continuous packet loss occur.
Journal of the Korean Operations Research and Management Science Society
/
v.37
no.3
/
pp.69-78
/
2012
Reduction of power consumption has been a major issue and an interesting challenge to maximize the lifetime of wireless sensor networks. We investigate the practical meaning of N-policy in queues as a power saving technique in a WSN. We consider the N-policy of a finite M/M/1 queue. We formulate the optimization problem of power consumption considering the packet loss probability. We analyze the trade-off between power consumption and the packet loss probability and demonstrate the operational characteristics of N-policy as a power saving technique in a WSN with various numerical examples.
Journal of Korean Society of Industrial and Systems Engineering
/
v.46
no.2
/
pp.57-71
/
2023
In this study, we analyze a finite-buffer M/G/1 queueing model with randomized pushout space priority and nonpreemptive time priority. Space and time priority queueing models have been extensively studied to analyze the performance of communication systems serving different types of traffic simultaneously: one type is sensitive to packet delay, and the other is sensitive to packet loss. However, these models have limitations. Some models assume that packet transmission times follow exponential distributions, which is not always realistic. Other models use general distributions for packet transmission times, but their space priority rules are too rigid, making it difficult to fine-tune service performance for different types of traffic. Our proposed model addresses these limitations and is more suitable for analyzing communication systems that handle different types of traffic with general packet length distributions. For the proposed queueing model, we first derive the distribution of the number of packets in the system when the transmission of each packet is completed, and we then obtain packet loss probabilities and the expected number of packets for each type of traffic. We also present a numerical example to explore the effect of a system parameter, the pushout probability, on system performance for different packet transmission time distributions.
TCP, which was developed on the basis of wired links, supposes that packet losses are caused by network congestion. In a wireless network, however, packet losses due to data corruption occur frequently. Since TCP does not distinguish loss types, it applies its congestion control mechanism to non-congestion losses as well as congestion losses. As a result, the throughput of TCP is degraded. To solve this problem of TCP over wireless links, previous researches, such as split-connection and end-to-end schemes, tried to distinguish the loss types and applied the congestion control to only congestion losses; yet they do nothing for non-congestion losses. We propose a novel transport protocol for wireless networks. The protocol called VS-TCP (Variable Segment size Transmission Control Protocol) has a reaction mechanism for a non-congestion loss. VS-TCP varies a segment size according to a non-congestion loss rate, and therefore enhances the performance. If packet losses due to data corruption occur frequently, VS-TCP decreases a segment size in order to reduce both the retransmission overhead and packet corruption probability. If packets are rarely lost, it increases the size so as to lower the header overhead. Via simulations, we compared VS-TCP and other schemes. Our results show that the segment-size variation mechanism of VS-TCP achieves a substantial performance enhancement.
Internet Engineering Task Force (IETF) has been considering the deployment of the Random Early Detection (RED) in order to avoid the increasing of packet loss rates which caused by an exponential increase in network traffic and buffer overflow. Although RED mechanism can prevent buffer overflow and hence reduce an average values of packet loss rates, but this technique is ineffective in preventing the consecutive drop in the high traffic condition. Moreover, it increases a probability and average number of consecutive dropped packet in the low traffic condition (named as "uncritical condition"). RED mechanism effects to TCP congestion control that build up the consecutive of the unnecessary transmission rate reducing; lead to low utilization on the link and consequently degrade the network performance. To overcome these problems, we have proposed a new mechanism, named as Extended Drop slope RED (ExRED) mechanism, by modifying the traditional RED. The numerical and simulation results show that our proposed mechanism reduces a drop probability in the uncritical condition.
Random Early Detection (RED) [1] is an active queue management scheme which has been deployed extensively to reduce packet loss during congestion. Although RED can improve loss rates, its performance depends severely on the tuning of its operating parameters. The idea of adaptively varying RED parameters to suit the network conditions has been investigated in [2], where the maximum packet dropping probability $max_p$ has been varied. This paper focuses on adaptively varying the queue weight $\omega_q$ in conjunction with $max_p$ to improve the performance. We propose two algorithms viz., $\omega_q$-thresh and $\omega_q$-ewma to adaptively vary $\omega_q$. The performance is measured in terms of the packet loss percentage, link utilization and stability of the instantaneous queue length. We demonstrate that varying $\omega_q$ and $max_p$ together results in an overall improvement in loss percentage and queue stability, while maintaining the same link utilization. We also show that $max_p$ has a greater influence on loss percentage and queue stability as compared to $\omega_q$, and that varying $\omega_q$ has a positive influence on link utilization.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.