• Title/Summary/Keyword: packet data

Search Result 1,637, Processing Time 0.023 seconds

Analysis of MANET Protocols Using OPNET (OPNET을 이용한 MANET 프로토콜 분석)

  • Zhang, Xiao-Lei;Wang, Ye;Ki, Jang-Geun;Lee, Kyu-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.87-97
    • /
    • 2009
  • A Mobile Ad hoc Network (MANET) is characterized by multi-hop wireless connectivity, frequently changing network topology with mobile nodes and the efficiency of the dynamic routing protocol plays an important role in the performance of the network. In this paper, the performance of five routing protocols for MANET is compared by using OPNET modeler: AODV, DSR, GRP, OLSR and TORA. The various performance metrics are examined, such as packet delivery ratio, end-to-end delay and routing overhead with varying data traffic, number of nodes and mobility. In our simulation results, OLSR shows the best performance in terms of data delivery ratio in static networks, while AODV has the best performance in mobile networks with moderate data traffic. When comparing proactive protocols (OLSR, GRP) and reactive protocols (AODV, DSR) with varying data traffic in the static networks, proactive protocols consistently presents almost constant overhead while the reactive protocols show a sharp increase to some extent. When comparing each of proactive protocols in static and mobile networks, OLSR is better than GRP in the delivery ratio while overhead is more. As for reactive protocols, DSR outperforms AODV under the moderate data traffic in static networks because it exploits caching aggressively and maintains multiple routes per destination. However, this advantage turns into disadvantage in high mobility networks since the chance of the cached routes becoming stale increases.

  • PDF

Enhanced Hybrid Routing Protocol for Load Balancing in WSN Using Mobile Sink Node

  • Kaur, Rajwinder;Shergi, Gurleen Kaur
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.3
    • /
    • pp.268-277
    • /
    • 2016
  • Load balancing is a significant technique to prolong a network's lifetime in sensor network. This paper introduces a hybrid approach named as Load Distributing Hybrid Routing Protocol (LDHRP) composed with a border node routing protocol (BDRP) and greedy forwarding (GF) strategy which will make the routing effective, especially in mobility scenarios. In an existing solution, because of the high network complexity, the data delivery latency increases. To overcome this limitation, a new approach is proposed in which the source node transmits the data to its respective destination via border nodes or greedily until the complete data is transmitted. In this way, the whole load of a network is evenly distributed among the participating nodes. However, border node is mainly responsible in aggregating data from the source and further forwards it to mobile sink; so there will be fewer chances of energy expenditure in the network. In addition to this, number of hop counts while transmitting the data will be reduced as compared to the existing solutions HRLBP and ZRP. From the simulation results, we conclude that proposed approach outperforms well than existing solutions in terms including end-to-end delay, packet loss rate and so on and thus guarantees enhancement in lifetime.

The Analysis of Priority Output Queuing Model by Short Bus Contention Method (Short Bus contention 방식의 Priority Output Queuing Model의 분석)

  • Jeong, Yong-Ju
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.2
    • /
    • pp.459-466
    • /
    • 1999
  • I broadband ISDN every packet will show different result if it would be processed according to its usage by the server. That is, normal data won't show big differences if they would be processed at normal speed. But it will improve the quality of service to process some kinds of data - for example real time video or voice type data or some data for a bid to by something through the internet - more fast than the normal type data. solution for this problem was suggested - priority packets. But the analyses of them are under way. Son in this paper a switching system for an output queuing model in a single server was assumed and some packets were given priorities and analysed. And correlation, simulating real life situation, was given too. These packets were analysed through three cases, first packets having no correlation, second packets having only correlation and finally packets having priority three cases, first packets having no correlation, second packets having only correlation and finally packets having priority and correlation. The result showed that correlation doesn't affect the mean delay time and the high priority packets have improved mean delay time regardless of the arrival rate. Those packets were assumed to be fixed-sized like ATM fixed-sized cell and the contention strategy was assumed to be short bus contention method for the output queue, and the mean delay length and the maximum 버퍼 length not to lose any packets were analysed.

  • PDF

Grid Sensor Network Routing Algorithm for Efficient Power Consumption (효율적인 에너지 소비를 위한 그리드 센서 네트워크 라우팅 알고리즘)

  • Kim, Min-Je;Jang, Kyung-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.1026-1029
    • /
    • 2009
  • Efficient Power consumption is important in sensor networks because charging of deployed sensor nodes is too difficult. So this paper focused on Modified-CBPER reduces energy consumption by reducing CBPER's data announcement ragne, and propose an algorithm to reduce power consumption by additional reduction of data announcement range. Proposed EM-CBPER(Enhanced Modified CBPER) somewhat increases power consumption of data request and data forwarding but it reduces total power consumption by reducing data announcement transmission of account for large quantity on total packet transmission.

  • PDF

Performance Analysis of a Cellular Mobile Communication System with Hybrid Guard Channels (Hybrid 가드채널이 있는 이동통신시스템이 성능 평가)

  • Hong, Sung-Jo;Choi, Jin-Yeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.4
    • /
    • pp.100-106
    • /
    • 2006
  • We analyze a voice/data integrated traffic model of the cellular mobile communication system with hybrid guard channels for voice and handoff calls. In a multi-service integrated wireless environment, quality of service guarantee is crucial for smooth transportation of real time information. Real time voice traffic requires a guaranteed upper bounded on both delay and packet error rate, whereas data traffic does not. Voice traffic has high transmission priority over data packets. Thus one of the important problems is the design of admission control schemes which can efficiently accommodate the differential quality of service requirements. In this paper, a hybrid guard channel scheme is considered in which arriving calls are assigned channels as long as the number of busy channels in the cell is below a predetermined first threshold. When the number of busy channels reaches the first threshold, new originating data calls are queued in the infinite data buffer. Then reaches second threshold, only handoff calls are assigned the remaining channels and new originating voice calls are blocked. We evaluate the system by a two-dimensional Markov chain approach and generating function method and obtain performance measures included blocking probability and forced termination probability.

Design and Implementation of Data Processing Middleware and Management System for IoT based Services

  • Lee, Yon-Sik;Mun, Young-Chae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.95-101
    • /
    • 2019
  • Sensor application systems for remote monitoring and control are required, such as the establishment of databases and IoT service servers, to process data being transmitted and received through radio communication modules, controllers and gateways. This paper designs and implements database server, IoT service server, data processing middleware and IoT management system for IoT based services based on the controllers, communication modules and gateway middleware platform developed. For this, we firstly define the specification of the data packet and control code for the information classification of the sensor application system, and also design and implement the database as a separate server for data protection and efficient management. In addition, we design and implement the IoT management system so that functions such as status information verification, control and modification of operating environment information of remote sensor application systems are carried out. The implemented system can lead to efficient operation and reduced management costs of sensor application systems through site status analysis, setting operational information, and remote control and management.

Traffic Flooding Attack Detection on SNMP MIB Using SVM (SVM을 이용한 SNMP MIB에서의 트래픽 폭주 공격 탐지)

  • Yu, Jae-Hak;Park, Jun-Sang;Lee, Han-Sung;Kim, Myung-Sup;Park, Dai-Hee
    • The KIPS Transactions:PartC
    • /
    • v.15C no.5
    • /
    • pp.351-358
    • /
    • 2008
  • Recently, as network flooding attacks such as DoS/DDoS and Internet Worm have posed devastating threats to network services, rapid detection and proper response mechanisms are the major concern for secure and reliable network services. However, most of the current Intrusion Detection Systems(IDSs) focus on detail analysis of packet data, which results in late detection and a high system burden to cope with high-speed network environment. In this paper we propose a lightweight and fast detection mechanism for traffic flooding attacks. Firstly, we use SNMP MIB statistical data gathered from SNMP agents, instead of raw packet data from network links. Secondly, we use a machine learning approach based on a Support Vector Machine(SVM) for attack classification. Using MIB and SVM, we achieved fast detection with high accuracy, the minimization of the system burden, and extendibility for system deployment. The proposed mechanism is constructed in a hierarchical structure, which first distinguishes attack traffic from normal traffic and then determines the type of attacks in detail. Using MIB data sets collected from real experiments involving a DDoS attack, we validate the possibility of our approaches. It is shown that network attacks are detected with high efficiency, and classified with low false alarms.

A Resource Scheduling Based on Iterative Sorting for Long-Distance Airborne Tactical Communication in Hub Network (허브 네트워크에서의 장거리 공중 전술 통신을 위한 반복 정렬 기반의 자원 스케줄링 기법)

  • Lee, Kyunghoon;Lee, Dong Hun;Lee, Dae-Hong;Jung, Sung-Jin;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.12
    • /
    • pp.1250-1260
    • /
    • 2014
  • In this paper, a novel resource scheduling, which is used for hub network based long distance airborne tactical communication, is proposed. Recently, some countries of the world has concentrated on developing data rate and networking performance of CDL, striving to keep pace with modern warfare, which is changed into NCW. And our government has also developed the next generation high capacity CDL. In hub network, a typical communication structure of CDL, hybrid FDMA/TDMA can be considered to exchange high rate data among multiple UAVs simultaneously, within limited bandwidth. However, due to different RTT and traffic size of UAV, idle time resource and unnecessary packet transmission delay can occur. And these losses can reduce entire efficiency of hub network in long distance communication. Therefore, in this paper, we propose RTT and data traffic size based UAV scheduling, which selects time/frequency resource of UAVs by using iterative sorting algorithm. The simulation results verified that the proposed scheme improves data rate and packet delay performance in low complexity.

A Novel Hitting Frequency Point Collision Avoidance Method for Wireless Dual-Channel Networks

  • Quan, Hou-De;Du, Chuan-Bao;Cui, Pei-Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.941-955
    • /
    • 2015
  • In dual-channel networks (DCNs), all frequency hopping (FH) sequences used for data channels are chosen from the original FH sequence used for the control channel by shifting different initial phases. As the number of data channels increases, the hitting frequency point problem becomes considerably serious because DCNs is non-orthogonal synchronization network and FH sequences are non-orthogonal. The increasing severity of the hitting frequency point problem consequently reduces the resource utilization efficiency. To solve this problem, we propose a novel hitting frequency point collision avoidance method, which consists of a sequence-selection strategy called sliding correlation (SC) and a collision avoidance strategy called keeping silent on hitting frequency point (KSHF). SC is used to find the optimal phase-shifted FH sequence with the minimum number of hitting frequency points for a new data channel. The hitting frequency points and their locations in this optimal sequence are also derived for KSHF according to SC strategy. In KSHF, the transceivers transmit or receive symbol information not on the hitting frequency point, but on the next frequency point during the next FH period. Analytical and simulation results demonstrate that unlike the traditional method, the proposed method can effectively reduce the number of hitting frequency points and improve the efficiency of the code resource utilization.

Distortion Measurement based Dynamic Packet Scheduling of Video Stream over IEEE 802.11e WLANs

  • Wu, Minghu;Chen, Rui;Zhou, Shangli;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2793-2803
    • /
    • 2013
  • In H.264, three different data partition types are used, which have unequal importance to the reconstructed video quality. To improve the performance of H.264 video streaming transmission over IEEE 802.11e Wireless Local Area Networks, a prioritization mechanism that categorizes different partition types to different priority classes according to the calculated distortion within one Group of Pictures. In the proposed scheme, video streams have been encoded based on the H.264 codec with its data partition enabled. The dynamic scheduling scheme based on Enhanced Distributed Channel Access has been configured to differentiate the data partitions according to their distortion impact and the queue utilization ratio. Simulation results show that the proposed scheme improves the received video quality by 1dB in PSNR compared with the existing Enhanced Distributed Channel Access static mapping scheme.