• Title/Summary/Keyword: packed-bed column

Search Result 75, Processing Time 0.026 seconds

Optimized Conditions for In Situ Immobilization of Lipase in Aldehyde-silica Packed Columns

  • Seo Woo Yong;Lee Kisay
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.6
    • /
    • pp.465-470
    • /
    • 2004
  • Optimal conditions for the in situ immobilization of lipase in aldehyde-silica packed columns, via reductive amination, were investigated. A reactant mixture, containing lipase and sodium borohydride (NaCBH), was recirculated through an aldehyde-silica packed column, such that the covalent bonding of the lipase, via amination between the amine group of the enzyme and the aldehyde terminal of the silica, and the reduction of the resulting imine group by NaCBH, could occur inside the bed, in situ. Mobile phase conditions in the ranges of pH $7.0{\~}7.8$, temperatures between $22{\~}28^{circ}C$ and flow rates from $0.8{\~}1.5\;BV/min$ were found to be optimal for the in situ immobilization, which routinely resulted in an immobilization of more than 70 mg­lipase/g-silica. Also, the optimal ratio and concentration for feed reactants in the in situ immobilization: mass ratio [NaCBH]/[lipase] of 0.3, at NaCBH and lipase concentrations of 0.75 and 2.5 g/L, respectively, were found to display the best immobilization characteristics for concentrations of up to 80 mg-lipase/g-silica, which was more than a 2-fold increase in immobilization compared to that obtained by batch immobilization. For tributyrin hydrolysis, the in situ immobilized lipase displayed lower activity per unit mass of enzyme than the batch-immobilized or free lipase, while allowing more than a $45\%$ increase in lipase activity per unit mass of silica compared to batch immobilization, because the quantity of the immobilization on silica was aug­mented by the in situ immobilization methodology used in this study.

Effects of Temperature and lncoming Concentrations on the Removal of Volatile Organic Compounds in a Biofilter Packed with Peat (Peat가 충진된 고정층 생물반응기에서 온도 투입농도가 휘발성 유기화합물의 분해에 미치는 영향)

  • 윤인길;박창호
    • KSBB Journal
    • /
    • v.16 no.3
    • /
    • pp.281-285
    • /
    • 2001
  • Biofiltration of volatile organic compounds (VOCs) was performed for 80 days in a biofilter packed with peat. The empty bed residence time was 3.2 min. for a gas mixture of isoprene, dimethyl sulfide, chloroform. benzene, trichlorethylene, toluene, m0xylene, o-xylene and styrene. After 34 days of acclimatization the removal efficiency for a 83 g/㎥ gas input was 93% at $25^{circ}C$ and 73% at $45^{circ}C$, respectively. The maximum cell density at $25^{circ}C$ was 1.12$\times$10(sup)8 cells/g. Removal efficiencies of m-xylene and toluene (91%) were better than that of benzene (86%). The first quarter of the packed column removed 60% of the incoming VOCs.

  • PDF

Phenol Removal Using Horseradish Peroxidase(HRP)-Mediated Polymerization Reaction in Saturated Porous Media (다공성 포화 매질에서 효소 중합반응을 이용한 페놀 제거)

  • Kim, Won-Gee;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.10
    • /
    • pp.984-991
    • /
    • 2008
  • This paper reports experimental results, demonstrating the feasibility of horseradish peroxidase(HRP) and H$_2$O$_2$ to reduce phenol transport in saturated porous media. A laboratory-scale packed column reactor(ID: 4.1 cm, sand-bed height 12 cm) column was utilized to simulate injection of HRP and H$_2$O$_2$ into an aquifer contaminated with phenol. Effluent concentrations of phenol and polymerization products were monitored before and after enzyme addition under various experimental conditions(enzyme dose: 0$\sim$2 AU/mL, [ionic strength]: 5$\sim$100 mM, pH: 5$\sim$9). The concentration of phenol in the column effluent was found to decrease by nearly 90% in the presence of HRP(2 AU/mL) and H$_2$O$_2$ in the continuous flow system at pH 7 and ionic strength 20 mM. The influent phenol was converted in the system to insoluble precipitate, which deposited in pore spaces. The remains were discharged as soluble oligomers. About 8% of total pore volume in column system was decreased by deposition of polymer produced.

Biosorption and Development of Biosorbent by using Seaweed, Sugassum thunbergii (해조류, Sargassum thunbergii를 이용한 중금속의 바이오 흡착제의 개발)

  • SUH Kuen-Hack;LEE Hak-Sung;SUH Jung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.1
    • /
    • pp.60-65
    • /
    • 2000
  • Biosorptions of Cr and Pb were evaluated for 23 species of marine algae collected from a Korean coast. Among a variety of species for biosorbent potential, Sargassum species showed higher uptake capacity for Cr and Pb. An adsorption equilibrium was reached in about 1 hr for Cr and 30 min for Pb. The maximum uptake capacity was136.0 mg Cr/g biomass and 232.5 mg Pb/g biomass, respectively. In Pb biosorption in the column packed with Sargassum tbunbertii, 300 and 200 bed Tolumes at the concentration of 50 mg/L in feed solution were processed at the column residence time of 5 and 10 min before the column breakthrough point occurred. The elutions with 0.1 M HCl solution were more than $95{\%}$. The high efficiency of continous biesorntion and elution (3 cycles) indicated that Sargassum thunbergii was an effective biosorbent for Pb recovery.

  • PDF

WASTEWATER TREATMENT USING COMBINATION OF MBR EQUIPPED WITH NON-WOVEN FABRIC FILTER AND OYSTER-ZEOLITE COLUMN

  • Jung, Yoo-Jin;Koh, Hyun-Woong;Shin, Won-Tae;Sung, Nak-Chang
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.247-256
    • /
    • 2005
  • A combination of the submerged membrane activated-sludge bioreactor(SMABR) equipped with non-woven fabric filter and oyster-zeolite (OZ) packed-bed adsorption column was studied to evaluate the advanced tertiary treatment of nitrogen and phosphorous. The non-woven filter module was submerged in the MBR and aeration was operated intermittently for an optimal wastewater treatment performance. Artificial wastewater with $COD_{Cr}$ of 220 mg/L, total nitrogen (T-N) of 45 mg/L, and total phosphorous (T-P) of 6 mg/L was used in this study. MLSS was maintained about $4,000\;{\sim}\;5,000\;mg/L$ throughout the experiments. The experiments were performed for 100-day with periodic non-woven filter washing. The results showed that $COD_{Cr}$ could be effectively removed in SMABR alone with over 94% removal efficiency. However, T-N and T-P removal efficiency was slightly lower than expected with SMABR alone. The permeate from SMABR was then passed through the OZ column for tertiary nutrients removal. The final effluent analysis confirmed that nutrients could be additionally removed resulting in over 87% and 46% removal efficiencies for T-N and T-P, respectively. The results of this study suggest that the waste oyster-shell can be effectively reclaimed as an adsorbent in advanced tertiary wastewater treatment processes in combination with SMABR equipped with non-woven fabric filter.

Studies on Decolorization Process for rhEGF as Cosmetic Ingredient

  • Zhao Xiao-wei;Xu Zhi-nan;Zhou Mao-hong;Cen Pei-lin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.236-241
    • /
    • 2005
  • A decolorization process using ion exchange chromatography was developed to refine rhEGF as a cosmetic ingredient. A macroreticular resin (D314) was selected, with respect to its high decolorization rate and recovery yield of rhEGF, and the operational conditions of the decolorization process optimized. The optimum conditions were as follows: the rhEGF effluent was ion exchanged at a flow rate of 60.0mL/h, with an effluent pH 5.0, using a chromatographic column (i.d. 16mm) packed with D314, with a 7.5cm in bed height. The decolorization process was carried out under the optimum conditions, and halted when the effluent volume reached 350mL, giving a decolorization rate and recovery yield of rhEGF higher than 67 and $80\%$, respectively. When the decolorization rate exceeded $67\%$, the final product turned out to be white or light yellowish, which was to the satisfaction of the cosmetic standard.

Residence Time Distributions of Liquid pbase Flow and Mass Transfers in the Trickle Bed Reactor (점적상 반응기에서 액상흐름의 체류시간 분포 및 물질전달)

  • Kim, Ki-Chang
    • Journal of Industrial Technology
    • /
    • v.6
    • /
    • pp.19-31
    • /
    • 1986
  • The residence time distribution of liquid flow in a 4.0cm diameter column packed with porous $Al_2O_3$ spheres of 0.37cm diameter were measured with pulse injections of a tracer under cocurrent trickling flow conditions. The mean residence time of liquid flow and liquid hold-up calculated by the transient curve of tracer were unaffected by gas flow rates under experimental ranges of liquid flow rates from 2.4 to $4.5(kg/m^2\;sec)$ and gas flow rates from 0 to $0.13(kg/m^2\;sec)$. The axial dispersion coefficient of liquid stream and apparent diffusivity of tracer in a micropore of solid particle were estimated from the response curve of tracer. The calculated Peclet No. were increased in ranges of 68-to 82 with a increasing of liquid mass velocity, and the external effective contacting efficiency between liquid and solid which can be expressed. by $(D_i)_{app}/D_i$ varied in ranges of 0.54 to 0.68 depending on the liquid flow rates. The gas to liquid(water) volumetric mass transfer coefficient were determined from desorption experiments with oxygen at $25^{\circ}C$ and 1 atm. The measured mass transfer coefficients were increased with liquid flow rates and the effect of gas flow rates on the mass transfer coefficient was insignificant.

  • PDF

Biosorption of Cr, Cu and Al by Sargassum Biomass

  • Lee, Hak-Sung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.126-131
    • /
    • 1997
  • The biosorption and desorption of Cr, Cu and Al were carried out using brown marine algae Sargassum fluitans biomass, known as the good biosorbent of heavy metals. The content of alginate bound to light metals could be changed by physical and chemical pretreatment. The maximum uptake of Cr, Cu and Al was independent of the alginate content. The maximum uptaker of Al was two times(mole basis) than those of Cu and Cr. The aluminum-alginate complex was found in the sorption solution of raw and protonated biomass. Most of Cu, Al and light metals sorbed in the biomass were eluted at pH 1.1. However, only 5 to 10% of Cr sorbed was eluted at pH 1.1. The stoiceometric ion exchange between Cu and Ca ion was observed on Cu biosorption with Ca-loaded biomass. A part of Cr ion was bound to biomass as Cr(OH)2+ or Cr(OH)2+. Al was also bound to biomass as multi-valence ion and interfered with the desorbed Ca ion. The behavior of raw S. fluitans in ten consecutive sorption-desorption cycles has been investigated in a packed bed flow-through-column during a continuous removal of copper from a 35 mg/L aqueous solution at pH 5. The eluant used was a 1%(w/v) CaCl2/HC solution at pH 3.

  • PDF

A Study on Biofilter for Hydrogen Sulfide Removal (황화수소 제거를 위한 Biofilter에 관한 연구)

  • Bin, Jeong-In;Lee, Byeong-Heon;Kim, Jung-Gyun;Gwon, Seong-Hyeon;Kim, Sang-Gyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.10 no.4
    • /
    • pp.287-292
    • /
    • 2001
  • A packed bed of volcanic rock was used as deodorizing material to remove hydrogen sulfide($H_2$S) from air in a laboratory-scale column, and was inoculated with Thiobacillus sp. as $H_2S$ oxidizer. The effects of volcanic rock particle size distribution on system pressure drop were examined. Various tests have been conducted to evaluate the effect of $H_2S$ inlet concentration and CBCT(Empty Bed Contact Time) on $H_2S$ elimination. The pressure drop for particles of size range from 5.6 to 10 mm was 14 mm$H_2S$/m at a representative gas velocity of 0.25m/s. Biofilter using scoria and Thiobacillus sp. could get the stable removal efficiencies more than 99.9% under $H_2S$ inlet concentrations in the range from 30 to 1,100ppm at a constant gas flow rate of $15.2{\ell}$/min. $H_2S$ removal efficiencies greater than 99% were observed as long as EBCT was longer than 8sec at the 250ppm of $H_2S$ inlet concentration. When EBCT was reduced to 5.5 sec, $H_2S$ removal efficiency decreased by about 12 percent. The maximum $H_2S$ elimination capacity was determined to be 269g-$H_2S/m^3{\cdot}hr$.

  • PDF

BIOFILTRATION OF GASEOUS TOLUENE USING ADSORBENT CONTAINING POLYURETHANE FOAM MEDIA

  • Amarsanaa, Altangerel;Shin, Won-Sik;Choi, Jeong-Hak;Choi, Sang-June
    • Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.1-13
    • /
    • 2006
  • In this study, conventional biofilters packed with flexible synthetic polyurethane (PU) foam carriers were operated to remove toluene from a contaminated air stream. PU foams containing various adsorbents (e.g., zeolite, sepiolite, dolomite and barite) were synthesized for the biofilter media and their adsorption characteristics of toluene were determined. Adsorption capacity of PU-adsorbent foam was in the order of PU-dolomite ${\approx}$ PU-zeolite > PU-sepiolite > PU-barite. During the biofiltration experiment, influent toluene concentration was in the range of 0-160 ppm and EBRT (i.e., empty bed residence time) was 45 seconds. Pressure drop of the biofilter bed was 4-5 mm $H_2O/m$ column height. The maximum removal capacity was in the order of PU-dolomite > PU-zeolite > PU-sepiolite > PU-barite, while the complete removal capacity was in the order of PU-dolomite > PU-sepiolite > PU-zeolite > PU-barite. The better biofiltration performance in PU-dolomite foam was because PU-dolomite foam had lower density and higher porosity than the others providing favorable conditions for microbial growth. The results of biodegradation kinetic analysis showed that PU-dolomite foam had higher maximum removal rate ($V_m\;=\;11.04\;g$ toluene/kg dry material/day) and saturation constant ($K_s\;=\;26.57\;ppm$) than the other PU foams. This supports that PU-dolomite foam was better than the others for biofilteration of toluene.