• 제목/요약/키워드: package material

검색결과 474건 처리시간 0.029초

자동차 조향장치용 소???R의 온간단조 공정 설계를 위한 3차원 유한요소해석 (3D FEM Analysis of Warm Forging Process Design for Socket at Automotive Steering Unit)

  • 이영선;이정환;이준용;배명한
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.186-189
    • /
    • 2001
  • In keeping with the needs of the times for energy and labor saving and simplifying production processes, interests has been growing in warm forging. Moreover, it is interested in increasing the material usage and production amounts. To improve the productivity and material usage, it is studied the process design of warm forging for socket. Until now, socket is manufactured by hot forging in hammer. The percentage of material usage is under $60\%$ in hammer forging. On the other han4 the percentage can be increased over $90\%$ in warm forging. To change the process from hot forging to warm forging, process designs must be performed. In this time, by using the FEM package, DEFORM-3D, we could get the shape of 1st process and minimum sealing pressure. They are very essential design data to decrease the trial and error. Practically, the overlap defect could be detected and eliminated with design modification of rib height and fillet radius. Moreover, forging load and minimum sealing pressure was defined by the 3D FEM analysis.

  • PDF

종이 앵글의 역학적 거동 분석과 강도 표준화 연구 (Mechanical Behavior Analysis and Strength Standardization of Paper Angle)

  • 박종민
    • 한국포장학회지
    • /
    • 제11권1호
    • /
    • pp.1-10
    • /
    • 2005
  • Paper angle, environment friendly packaging material, has been mainly used as an edge protector. But, we have perceived its application to package design of heavy product such as strength reinforcement or unit load system (ULS) in the future. Above all, understanding of buckling behavior for angle itself and compression strength and quality standard have to be accomplished for the paper angle to be used for this purpose. The purpose of this study was to elucidate the buckling behavior through theoretical and finite element analysis, and to develop compression strength model by compression test for symetric and asymetric paper angle. Based on the result of theoretical and finite element analysis, increasing rate of buckling of asymmetric paper angle was higher as applied load level was bigger and/or the length of angle was longer than that of symmetric paper angle. Decreasing rate of minimum principal moment of inertia was remarkably increased as the extent of asymmetric angle is bigger, and buckling orientation of angle was open direction near the small web. Increasing rate of maximum compression strength (MCS) for thickness of angle was smaller as the web size was bigger in symmetric angle. MCS of asymmetric angle of $43{\times}57$ and $33{\times}67$ was decreased $15{\sim}18%$ and $65{\sim}78%$, and change of buckling was increased $12{\sim}13%$ and $62{\sim}66%$, respectively.

  • PDF

LED 및 반도체 소자 리드프레임 패키징용 Cu/STS/Cu 클래드메탈의 기계적/열전도/전기적 특성연구 (Study on the Mechanical Properties and Thermal Conductive Properties of Cu/STS/Cu Clad Metal for LED/semiconductor Package Device Lead Frame)

  • 이창훈;김기출;김용성
    • Journal of Welding and Joining
    • /
    • 제30권3호
    • /
    • pp.32-37
    • /
    • 2012
  • Lead frame which has a high thermal conductivity and high mechanical strength is one of core technology for ultra-thin electronics such as LED lead frames, memory devices of semiconductors, smart phone, PDA, tablet PC, notebook PC etc. In this paper, we fabricated a Cu/STS/Cu 3-layered clad metal for lead frame packaging materials and characterized the mechanical properties and thermal conductive properties of the clad metal lead frame material. The clad metal lead frame material has a comparable thermal conductivity to typical copper alloy lead frame materials and has a reinforced mechanical tensile strength by 1.6 times to typical pure copper lead frame materials. The thermal conductivity and mechanical tensile strength of the Cu/STS/Cu clad metal are 284.35 W/m K and $52.78kg/mm^2$, respectively.

Effect of Lu3Al5O12:Ce3+ and (Sr,Ca)AlSiN3:Eu2+ Phosphor Content on Glass Conversion Lens for High-Power White LED

  • Lee, Hyo-Sung;Hwang, Jong Hee;Lim, Tae-Young;Kim, Jin-Ho;Jeon, Dae-Woo;Jung, Hyun-Suk;Lee, Mi Jai
    • 한국세라믹학회지
    • /
    • 제52권4호
    • /
    • pp.229-233
    • /
    • 2015
  • Currently, the majority of commercial white LEDs are phosphor converted LEDs made of a blue-emitting chip and YAG yellow phosphor dispersed in organic silicone. However, silicone in high-power devices results in long-term performance problems such as reacting with water, color transition, and shrinkage by heat. Additionally, yellow phosphor is not applicable to warm white LEDs that require a low CCT and high CRI. To solve these problems, mixing of green phosphor, red phosphor and glass, which are stable in high temperatures, is common a production method for high-power warm white LEDs. In this study, we fabricated conversion lenses with LUAG green phosphor, SCASN red phosphor and low-softening point glass for high-power warm white LEDs. Conversion lenses can be well controlled through the phosphor content and heat treatment temperature. Therefore, when the green phosphor content was increased, the CRI and luminance efficiency gradually intensified. Moreover, using high heat treatment temperatures, the fabricated conversion lenses had a high CRI and low luminance efficiency. Thus, the fabricated conversion lenses with green and red phosphor below 90 wt% and 10 wt% with a sintering temperature of $500^{\circ}C$ had the best optical properties. The measured values for the CCT, CRI and luminance efficiency were 3200 K, 80, and 85 lm/w.

제진재 경량화를 위한 설계 프로세스 연구 (Study on the Design Process to minimize the Weight of the Damping Material)

  • 김기창;권요섭;김찬묵;김진택
    • 한국소음진동공학회논문집
    • /
    • 제22권2호
    • /
    • pp.115-122
    • /
    • 2012
  • Sound packages and damping materials have been widely applied on the floor to decrease the interior noise of a vehicle. Based on the previous researches on the low-noise vehicles, weight optimization through minimization of damping material usage is required while decreasing mid and high frequency range noise by application of sound packages. This paper describes the analysis process of robust design of vehicle body structure before applying damping materials and focuses on the analysis and test process of the location optimization at the stage of damping material application. A vibration experiment for the analysis of floor panel velocity with respect to the excitation of suspension attachment parts at the underfloor of a vehicle is performed. And through the improvement correlation between FEA and TEST, a design guide to optimize damping materials application in the early design stage is proposed. A research on vibration damping steel sheets and liquid acoustic spray on deadener(LASD) is performed to minimize manufacturing time and to minimize the space for pre-existing asphalt damping materials. As results of this study, panel stiffness is achieved through curved surface panel and bead optimization. And test baseline of optimum design is suggested through damping material optimization. And finally, through re-establishing the analysis process for vibration reduction of vehicle floors and lightweight design of damping materials, it is possible to design damping materials efficiently in the preceding stage of design.

백색 LED용 색변환 렌즈의 열처리 온도 및 코팅 두께에 따른 영향 (Effect of Heat Treatment Temperature and Coating Thickness on Conversion Lens for White LED)

  • 이효성;황종희;임태영;김진호;정현석;이미재
    • 한국세라믹학회지
    • /
    • 제51권6호
    • /
    • pp.533-538
    • /
    • 2014
  • Today, silicon and epoxy resin are used as materials of conversion lenses for white LEDs on the basis of their good bonding and transparency in LED packages. But these materials give rise to long-term performance problems such as reaction with water, yellowing transition, and shrinkage by heat. These problems are major factors underlying performance deterioration of LEDs. In this study, in order to address these problems, we fabricated a conversion lenses using glass, which has good chemical durability and is stable to heat. The fabricated conversion lenses were applied to a remote phosphor type. In this experiment, the conversion lens for white LED was coated on a glass substrate by a screen printing method using paste. The thickness of the coated conversion lens was controlled during 2 or 3 iterations of coating. The conversion lens fabricated under high heat treatment temperature and with a thin coating showed higher luminance efficiency and CCT closer to white light than fabricated lenses under low heat treatment temperature or a thick coating. The conversion lens with $32{\mu}m$ coating thickness showed the best optical properties: the measured values of the CCT, CRI, and luminance efficiency were 4468 K, 68, and 142.22 lm/w in 20 wt% glass frit, 80 wt% phosphor with sintering at $800^{\circ}C$.

우레탄레진(TSR-755)을 적용한 시작형 사출금형 연구 (Injection mold development applying starting mold material, urethane resin(TSR-755))

  • 김광희;김정식
    • 한국산학기술학회논문지
    • /
    • 제13권10호
    • /
    • pp.4392-4397
    • /
    • 2012
  • 본 연구에서는 우레탄레진(TSR-755)을 이용하여 레이저 조형으로 시작형 몰드를 가공하고, 상용패키지(Unigraphics)를 이용하여 자동차 단자함 케이블 케이스를 설계한 후 사출성형해석(Simpoe-Mold)을 사용하여 충전, 보압, 냉각, 변형해석을 수행하여 게이트 위치 선정 및 냉각 사이클 등을 검토 하였다. 해석결과, 세라믹소재 가공 후 사출금형에 인서트시켜 성형 시 열전도도 및 냉각시간을 줄여 줌을 확인할 수 있으며, 게이트 및 냉각라인 선정을 빠른 시간에 결정할 수 있어 생산성 향상을 가져올 것으로 나타났다.

Fabrication of Inkjet-printed and Non-sintered $BaTiO_3$ Dielectric Film

  • Lim, Jong-Woo;Kim, Ji-Hoon;Kim, Hyo-Tea;Yoon, Young-Joon;Yoon, Ho-Gyu;Kim, Jong-Hee
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.80-80
    • /
    • 2009
  • $BaTiO_3$ has high permittivity so that has been applied to dielectric and insulator materials in 3D system-level package integration. In order to achieve excellent performance of device, the $BaTiO_3$ layer should be highly dense. In this study, $BaTiO_3$ thick films were prepared by the inkjet printing method using 4 vol.% $BaTiO_3$ colloidal inks and cured at $28^{\circ}C$ for 5 h after infiltration of polymer resin for non-sintered process using 3 vol.% cyanate ester emulsion ink. From the obtained results. packing density was determined to be improved by overlapping rabbit ears which were generated by coffee ring effect. We also calculated the packing densities of the films and correlated these packing densities to the measured permittivity of the films.

  • PDF

The Mechanical and Electrical Properties of PTFE Hymer

  • 김진철;유성현;이정규;김진영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.156-156
    • /
    • 2009
  • 전자기기의 Slim화에 따라 부품 일장용 Board 기판의 두께도 날로 감소해지고 있다. 이와는 정 반대로 기판의 층수는 더 늘어나고 있다. 이에 따라 기판의 구성요소인 절연재의 두께도 감소하고 있다. 전자기기는 각각의 Module이 저항을 가지는데 이를 matching하기 위해서 각 module이나 package가 가지는 저항값을 상호 비슷하게 맞춘다. 하지만, 기판의 절연재의 두께 감소는 이러한 저항값이 낮아지게 한다. 이렇게 낮아진 저항값을 높이기 위해서는 전도체의 폭을 줄여야 한다. 하지만, 이렇게 전도체의 폭을 줄이는 것은 기판 제작 비용의 상승 및 제작 물가에 이르게 할 수 있다. 이를 해결하기 위해서는 절연재의 유전율을 낮추는 것이 가장 효과적이다. 본 연구에서는 PCB 기판의 유전율을 낮추기 위해 Liquid Crystalline Polymer(LCP)에 PTFE powder를 넣어 기판 재료의 가능성을 조사하였다. 유전율은 PTFE의 첨가량이 증가함에 따라 감소하여 40wt% 첨가할 경우 유전율이 2.4 정도로 낮아졌다. 이에 반해 열팽창계수는 증가가 크지 않고 peel strength는 감소함을 알 수 있었다.

  • PDF

Mold-Flow Simulation in 3 Die Stack Chip Scale Packaging

  • Rhee Min-Woo
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2005년도 ISMP
    • /
    • pp.67-88
    • /
    • 2005
  • Mold-Flow 3 Die Stack CSP of Mold array packaging with different Gate types. As high density package option such as 3 or 4 die stacking technologies are developed, the major concerning points of mold related qualities such as incomplete mold, exposed wires and wire sweeping issues are increased because of its narrow space between die top and mold surface and higher wiring density. Full 3D rheokinetic simulation of Mold flow for 3 die stacking structure case was done with the rheological parameters acquired from Slit-Die rheometer and DSC of commercial EMC. The center gate showed severe void but corner gate showed relatively better void performance. But in case of wire sweeping related, the center gate type showed less wire sweeping than corner gate types. From the simulation results, corner gate types showed increased velocity, shear stress and mold pressure near the gate and final filling zone. The experimental Case study and the Mold flow simulation showed good agreement on the mold void and wire sweeping related prediction. Full 3D simulation methodologies with proper rheokinetic material characterization by thermal and rheological instruments enable the prediction of micro-scale mold filling behavior in the multi die stacking and other complicated packaging structures for the future application.

  • PDF