• Title/Summary/Keyword: pH studies

Search Result 3,517, Processing Time 0.028 seconds

Twenty-Four Hour pH Study and Manometry in Gastric Esophageal Substitutes in Children

  • Kekre, Geeta;Dikshit, Vishesh;Kothari, Paras;Laddha, Ashok;Gupta, Abhaya
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.21 no.4
    • /
    • pp.257-263
    • /
    • 2018
  • Purpose: Studies on the physiology of the transposed stomach as an esophageal substitute in the form of a gastric pull-up or a gastric tube in children are limited. We conducted a study of motility and the pH of gastric esophageal substitutes using manometry and 24-hour pH measurements in 10 such patients. Methods: Manometry and 24 hour pH studies were performed on 10 children aged 24 to 55 months who had undergone gastric esophageal replacement. Results: Six gastric tubes (4, isoperistaltic; 2, reverse gastric tubes) and 4 gastric pull-ups were studied. Two gastric tubes and 4 gastric pull-ups were transhiatal. Four gastric tubes were retrosternal. The mean of the lowest pH at the midpoint of the substitute was 4.0 (range, 2.8-5.0) and in the stomach remaining below the diaphragm was 3.3 (range, 1.9-4.2). In both types of substitute, the difference between the peak and the nadir pH recorded in the intra-thoracic and the sub-diaphragmatic portion of the stomach was statistically significant (p<0.05), with the pH in the portion below the diaphragm being lower. The lowest pH values in the substitute and in the remnant stomach were noted mainly in the evening hours whereas the highest pH was noted mainly in the morning hours. All the cases showed a simultaneous rise in the intra-cavitatory pressure along the substitute while swallowing. Conclusion: The study suggested a normal gastric circadian rhythm in the gastric esophageal substitute. Mass contractions occurred in response to swallowing. The substitute may be able to effectively clear contents.

Studies on the Standardization of pH Measurement System (pH 측정 시스템의 표준화에 관한 연구)

  • Lee, Hwa Shim;Kim, Myung Soo;Kim, Jin Bok;Oh, Sang Hyup
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.4
    • /
    • pp.432-442
    • /
    • 1998
  • Since the definition of pH, $pH=-Ioga_H$ is based on a single ion activity, pH values can not be determined with measurement itself, but require an approximation method. They are derived from EMF measurement of a liquid junction free cell using hydrogen and Ag/AgCl electrodes. Primary standard materials with certified pH values can be obtained with this approximation method. Standard buffer solutions are used to calibrate pH meters. Thus the accuracy of the pH values of standard buffer solutions limits the reliability of measured pH values can be obtained with this approximation method. Standard buffer solution are used to calibrate pH meters. Thus the accuracy of the pH values of standard buffer solutions limits the reliability of measured pH values of sample solutions. To certify the pH values, we have established the system for the primary standard measurement and certified the pH of buffer solutions in the range of 1.6∼12.5 pH unit within uncertainty of ${\pm}0.005$ pH unit.

  • PDF

$^{31}p$ Nuclear Magnetic Resonance Studies of Acetic Acid Inhibition of Ethanol Production by Strains of Zymomonas mobilis

  • Kim, In-Seop;Barrow, Kevin D.;Rogers, Peter L.
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.90-98
    • /
    • 2003
  • In vivo $^31p$ Nuclear Magnetic Resonance ($^31p$NMR) and metabolic studies were carried out on an acetic acid tolerant mutant, Zymomonas mobilis $ZM4/Ac^R$, and compared to those of the parent strain, Z. mobilis ZM4, to evaluate possible mechanisms of acetic acid resistance. This investigation was initiated to determine whether or not the mutant strain might be used as a suitable recombinant host far ethanol production from lignocellulose hydrolysates containing various inhibitory compounds. $ZM4/Ac^R$ showed multiple resistance to other lignocellulosic toxic compounds such as syringaldehyde, furfural, hydroxymethyl furfural, vanillin, and vanillic acid. The mutant strain was resistant to higher concentrations of ethanol or lower pH in the presence of sodium acetate, compared to ZM4 which showed more additive inhibition. in vivo $^31p$ NMR studies revealed that intracellular acidification and de-energization were two mechanisms by which acetic acid exerted its inhibitory effect. For $ZM4/Ac^R$, the internal pH and the energy status were less affected by sodium acetate compared to the parent strain. This resistance to pH change and de-energization caused by acetic acid is a possible explanation for the development of resistance by this strain.

Synthesis and pH-Dependent Micellization of Sulfonamide-Modified Diblock Copolymer

  • Pal Ravindra R.;Kim Min Sang;Lee Doo Sung
    • Macromolecular Research
    • /
    • v.13 no.6
    • /
    • pp.467-476
    • /
    • 2005
  • The main objective of this study was to develop and characterize pH-sensitive biodegradable polymeric materials. For pH-sensitivity, we employed three kinds of moieties: 2-amino-3-(lH-imidazol-4-yl)-propionic acid (H), N-[4-( 4,6-dimethyl-pyrimidin-2ylsulfamoyl)-phenyl]succinamic acid (SM), and 2- {3-[ 4-( 4,6-dimethyl-pyrim­idin- 2-ylsulfamoyl)-phenylcarbamoyl]-propionylamino} -3-(3 H - imidazol-4-yl)-propionic acid (SH). The pH -sensitive diblock copolymers were synthesized by ring opening polymerization and coupling reaction from poly(ethylene glycol) (MPEG), $\varepsilon$-caprolactone (CL), D,L-lactide (LA) and pH-sensitive moieties. The pH-sensitive SH molecule was synthesized in a two-step reaction. The first step involved the synthesis of SHM, a methyl ester derivative of SH, by coupling reaction of SM and L-histidine methyl ester dihydrochloride, whereas the second step involved the hydrolysis of the same. The synthesized SM, SHM and SH molecules were characterized by FTIR, $^{1}H$-NMR and $^{13}C$-NMR spectroscopy, whereas diblock copolymers and pH-sensitive diblock copolymer were characterized by $^{1}H$-NMR and GPC analysis. The critical micelle concentrations were determined at various pH conditions by fluorescence technique using pyrene as a probe. The micellization and demicellization studies of pH-sensitive diblock copolymers were also done at different pH conditions. The pH-sensitivity was further established by acid-based titration and DLS analysis.

Effects of pH and aeration rates on removal of organic matter and nutrients using mixotrophic microalgae (Mixotrophic 미세조류를 이용한 유기물 및 영양염류 제거에 미치는 pH 및 폭기의 영향)

  • Kim, Sunjin;Lee, Yunhee;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.69-76
    • /
    • 2013
  • Specific growth rate and removal rate of nitrogen and phosphorus of Chlorella sorokiniana, Chlorella vulgaris, Senedesmus dimorphus those are able to metabolite mixotrophically and have high nitrogen and phosphorus removal capacity were examined. Based on the results, one microalgae was selected and conducted experiments to identify the operating factors such as pH and aeration rate. The specific growth rate and phosphorus removal rate of C. sorokiniana significantly presented as $0.29day^{-1}$ and 1.65 mg-P/L/day, while the nitrogen removal rate was high as 12.7 mg-N/L with C. vulgaris. C. sorokiniana was chosen for appropriate microalgae to applying for wastewater treatment system and was cultured in pH ranged 3 to 11. High specific growth rate and removal rate of nitrogen and phosphorus were shown at pH 7 as $0.71day^{-1}$, 7.61 mg-N/L/day, and 1.24 mg-P/L/day, respectively. The specific growth rate examined with aeration rate between 0 and 2 vvm (vol/vol-min) highly presented as $1.2day^{-1}$ with 1.5 ~ 2 vvm, while the nitrogen removal rate was elevated with 0.5 vvm as 9.43 mg-N/L/day.

Optimal Conditions for Hepatitis B Cove Antigen Production in Shaked Flask Fermentation

  • Tey Beng Ti;Yong Kok Hoe;Ong Hong Puay;Ling Tau Chuan;Ong Swee Tin;Tan Yan Peng;Ariff Avbakariya;Tan Wen Siang
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.5
    • /
    • pp.374-378
    • /
    • 2004
  • The effects of various environmental factors such as pH (5, 6, 7, 8 and 9), temperature (30, 37 and $40^{\circ}C$) and rotational speed (150, 200 and 250 rpm) on the growth and the hepatitis B core antigen (HBcAg) production of Escherichia coli W3110IQ were examined in the present Study. The highest growth rate is achieved at pH 7, $37^{\circ}C$ and at a rotational Speed of 250 rpm which is 0.927 $h^{-1}$. The effect of pH on cell growth is more substantial compared to other parameters; it recorded a $123\%$ different between the highest growth rate (0.927 $h^{-1}$) at pH 7 and lowest growth at pH 5. The highest protein yield is achieved at pH 9, rotational speed of 250 rpm and $40^{\circ}C$. The yield of protein at pH 7 is $154\%$ higher compared to the lowest yield achieved at pH 5. There is about $28\%$ different of the protein yield for the E. coli cultivated at 250 rpm compared to that at 150 rpm which has the lowest HBcAg yield. The yield of protein at $40^{\circ}C$ is $38\%$ higher compared to the lowest yield achieved at $30^{\circ}C$.

Sorption of Ni(II), Cu(II) and Fe(III) ions from Aqueous Solutions Using Activated Carbon (활성탄소를 이용한 수용액으로부터의 Ni(II), Cu(II) 그리고 Fe(III) 이온의 흡착)

  • Hanafi, H.A.;Hassan, H.S.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.533-540
    • /
    • 2010
  • An activated carbon was tested for its ability to remove transition metal ions from aqueous solutions. Physical, chemical and liquid-phase adsorption characterizations of the carbon were done following standard procedures. Studies on the removal of Ni(II), Cu(II) and Fe(III) ions were attempted by varying adsorbate dose, pH of the metal ion solution and time in batch mode. The equilibrium adsorption data were fitted with Freundlich and Langmuir and the isotherm constants were evaluated, equilibrium time of the different three metal ions were determined. pH was found to have a significant role to play in the adsorption. The processes were endothermic and the thermodynamic parameters were evaluated. Desorption studies indicate that ion-exchange mechanism is operating.

X-Ray Diffraction Studies of Uranyl Hydrolysis Precipitates Synthesized in Neutral to Alkaline Aqueous Solutions

  • 박용준;표형렬;김원호;전관식
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.10
    • /
    • pp.925-929
    • /
    • 1996
  • Uranyl hydrolysis precipitates were obtained by increasing pH value of aqueous uranyl solution in the range of neutral to alkaline pH value and their phase transformation during the solubility experiment under various conditions has been examined. The precipitates formed in the hydrolysis reaction of uranyl ion had a layered structure such as a meta-schoepite phase, a schoepite structure, or a mixed phase of meta-schoepite and schoepite. Phase transformation between them was strongly dependent on the pH value at which the precipitate was formed. The distance between the layers in meta-schoepite or schoepite phase was ∼7.35 Å, and it was increased with the pH value at which the precipitate was synthesized as well as the pH values of the aqueous solution. The phase transformation from a meta-schoepite to schoepite was fast for the precipitates formed at low pH values, however, it was not the case for the precipitates formed at high pH values. A small difference of pH value in aqueous solution gave a great change on its solubilities near pH 9.7, because a layered structure of the precipitates became amorphous above that pH value. Greater solubility for the precipitate formed at higher pH value can be explained from the fact that the precipitates formed at low pH value had a better crystallinity and also that the precipitates formed at higher pH value has a slower rate of crystallization.

Noninvasive study of Drug Delivery Systems using Nuclear Magnetic Resonance Microimaging (핵자기공명 현미영상법을 이용한 약물전달체계의 비파괴연구)

  • 이동훈;고락길
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.173-178
    • /
    • 1997
  • pH sensitive polymers have long been utilized as one important type among many interesting drug delivery systems. This is due to the reason of different pH environments in human organs, which requires different pH control mechanism depending upon the organs. In the present study the pH sensitivity was investigated for both pH sensitive and pH insensitive biopolymers using the diffusion effect along with the swelling effect. NMR microscopy was performed along with optical microscopy. For the analysis of diffusion effect, UMR Microscopy was perFormed to measure diffusion coefficients for various liquids such as distilled water, acetone and DMSO(dimethyl sulfoxide). Also, this technique is expected to contribute to the studies for many pH drug delivery systems.

  • PDF

A STUDY ON THE HYDROGEN ION CONCENTRATION OF PUS IN THE SUPPURATIVE ORAL DISEASES (화농성구강질환에 있어서 농즙의 수소이온 농도에 관한 연구)

  • Ha, Woong-Chul
    • The Journal of the Korean dental association
    • /
    • v.9 no.12
    • /
    • pp.841-845
    • /
    • 1971
  • Author has made the studies on the pH of pus in the 53 suppurative disesed patients who had admitted to department of ora surgery, Infirmary of Schoo of Dentistry, Seoul National University. The results were obtained as follows; 1. The average pH of pus in the patients with suppurative oral diseases was 6.46 and the pH of pus was ranging 5.0 to 7.2. 2. The pH value of pus was not significant between the males(pH: 6.58) and females (pH: 6.40). 3. The pH vaule of pus in patients treated by antibiotics trend to slightly alkaline than that of untreated patients. 4.The pH vaule of pus in the pericoronitis, periodontal abscess and other localized oral infections were slightly alkaline than buccal abscess and osteomyelitis, and acute suppurative diseases of jaws was more acid than chronic diseases. In general, it was seemed the early stages of inflammation was alkaline, and the later stages was acid.

  • PDF