• Title/Summary/Keyword: pH sensitive polymers

Search Result 24, Processing Time 0.021 seconds

Interaction between Poly(L-lysine) and Poly(N-isopropyl acrylamide-co-acrylic acid) in Aqueous Solution

  • Sung, Yong-Kiel;Yoo, Mi-Kyong;Cho, Chong-Su
    • Macromolecular Research
    • /
    • v.8 no.1
    • /
    • pp.26-33
    • /
    • 2000
  • A series of pH/temperature sensitive polymers were synthesized by copolymerizing N-isopro-pyl acrylamide(NIPAAm) and acrylic acid(AAc) . The influence of polyelectrolyte between poly(allyl amine) (PAA) and poly(L-lysine)(PLL) on the lower critical solution temperature(LCST) of pH/temperature sensitive polymer was compared in the range of pH 2∼12. The LCST of PNIPAAm/water in aqueous poly(NIPAAm-co-AAc) solution was determined by cloud point measurements. A polyelectrolyte complex was prepared by mixing poly(NIPAAm-co-AAc) with poly(allyl amine) (PAA) or poly(L-lysine) (PLL) solutions as anionic and cationic polyelectrolytes, respectively. The effect of polyelectrolyte complex formation on the conformation of PLL was studied as a function of temperature by means of circular dichroism(CD). The cloud points of PNIPAAm in the aqueous copolymers solutions were stongly affected by pH, the presence of polyelectrolyte solute, AAc content, and charge density. The polyelectrolyte complex was formed at neutral condition. The influence of more hydrophobic PLL as a polyelectrolyte on the cloud point of PNIPAAm in the aqueous copolymer solution was stronger than that of poly(allyl amine)(PAA). Although polymer-polymer complex was formed between poly(NIPAAm-co-AAc) and PLL, the conformational change of PLL did not occur due to steric hinderance of bulky N-isopropyl groups of PNIPAAm.

  • PDF

A study on the Water Retention of Coating Colors(IV)-Synthesis of Alkali Sensitive Water Retention and Rheology Modifiers- (도공액의 보수성에 관한연구(제4보)- 알칼리 반응형 보수.유동성 개량제의 합성 -)

  • 이용규;엄기용
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.3
    • /
    • pp.17-25
    • /
    • 1997
  • Natural water-soluble polymers such as starch, casein and carboxy methyl cellulose(CMC) have been limited in their uses. However, the proper water retention of coating colors can not be obtained without addition of these polymers. Furthermore, the coating runnability and the physical properties of coated paper were not also satisfied. Therefore, the objective of this study was to synthesize the water retention and flow modifiers which can improve the water retention and flow properties of coating colors. We have measured physical properties of flow modifiers and coating colors which included flow modifiers. The viscosity of flow modifiers was very low at acid pH, and rapidly increased at about pH 7, and gradually reached to equilibrium at alkali pH. Such an increase comes from the molecular weight of flow modifiers and the amount of acrylic and methacrylic acids. The viscosity of coating color containing the flow modifiers was lower than that containing CMC. However, both of them had little difference in water retention. The water-phase viscosity of synthetic modifier containing coating color was either higher or similar compared to that of CMC containing coating color. The high shear viscosity of coating colors was low. Therefore, it can be concluded that the synthetic flow modifiers are very useful for improvement of flow properties and water retentions.

  • PDF

Synthesis and Characterization of Novel pH-Sensitive Hydrogels Containing Ibuprofen Pen dents for Colon-Specific Drug Delivery

  • Mahkam, Mehrdad;Poorgholy, Nahid;Vakhshouri, Laleh
    • Macromolecular Research
    • /
    • v.17 no.9
    • /
    • pp.709-713
    • /
    • 2009
  • The aim of this study was to develop novel intestinal specific drug delivery systems with pH sensitive swelling and drug release properties. The carboxyl group of ibuprofen was converted to a vinyl ester group by reacting ibuprofen and vinyl acetate as an acylating agent in the presence of catalyst. The glucose-6-acrylate-1, 2, 3, 4-tetraacetate (GATA) monomer was prepared under mild conditions. Cubane-1, 4-dicarboxylic acid (CDA) linked to two 2-hydroxyethyl methacrylate (HEMA) group was used as the crosslinking agent (CA). Methacrylic-type polymeric prodrugs were synthesized by the free radical copolymerization of methacrylic acid, vinyl ester derivative of ibuprofen (VIP) and GATA in the presence of cubane cross linking agent. The structure of VIP was characterized and confirmed by FTIR, $^1H$ NMR and $^{13}C$ NMR spectroscopy. The composition of the cross-linked three-dimensional polymers was determined by FTIR spectroscopy. The hydrolysis of drug polymer conjugates was carried out in cel-lophane membrane dialysis bags, and the in vitro release profiles were established separately in enzyme-free simulated gastric and intestinal fluids (SGF, pH 1 and SIF, pH 7.4). The detection of a hydrolysis solution by UV spectroscopy at selected intervals showed that the drug can be released by hydrolysis of the ester bond between the drug and polymer backbone at a low rate. Drug release studies showed that increasing the MAA content in the copolymer enhances the rate of hydrolysis in SIP. These results suggest that these polymeric prodrugs can be useful for the release of ibuprofen in controlled release systems.

Synthesis and Physical Properties of pH-sensitive Semi-IPN Hydrogels Based on Poly( dimethylaminoethyl methacrylate-co-PEG dimethacrylate) and Poly(acrylic acid)

  • Kim Goo-Myun;Jo Won-Ho
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.223-228
    • /
    • 2006
  • Hydrogels of semi-interpenetrating polymer networks (semi-IPNs) were prepared by two step reactions. Dimethylaminoethyl methacrylate (DMAM) and poly(ethylene glycol)-dimethacrylate (PEGDM) were copolymerized to yield hydrogels, and then acrylic acid (AA) monomer were adsorbed in the hydrogels followed by polymerization of AA to produce semi-IPNs. The swelling behavior of semi-IPNs depends largely on pH of medium, showing that the degree of swelling of the semi-IPNs exhibits a minimum at pH 6.0. It is observed that the elastic modulus of semi-IPNs is closely related to its swelling behavior.

Fabrication and Characteristics of FET Type Semiconductor Urea and Glucose Sensor Employing Photolithography Techniques (사진식각기술을 이용한 FET형 반도체 요소 및 포도당센서의 제조와 그 특성)

  • Cho, Byung-Woog;Kim, Chang-Soo;Seo, Hwa-Il;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.101-106
    • /
    • 1992
  • pH-ISFETs, the semiconductor pH sensors, were combined with immobilized enzyme membranes to prepare FET type urea and glucose sensors and its operational characteristics were investigated. Photolithography techniques were applied to immobilize enzymes on the $H^{+}$ sensing membrane of the pH-ISFET with photo-sensitive polymers, PVA-SbQ. Fabricated urea and glucose sensors could determine $0.5{\sim}50{\;}mg/dl$ urea concentrations and $10{\sim}1000{\;}mg/dl$ glucose concentrations, respectively.

  • PDF

Photolithographic Formation of GOD Immobilized Membranes for ISFET Glucose Sensors (ISFET 포도당센서를 위한 GOD 고정화막의 사진식각 형성법)

  • 김창수;최성문;서화일;김의락;손병기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.4
    • /
    • pp.58-63
    • /
    • 1992
  • Photolithography techniques were applied for immobilization of GOD membrane on the pH-ISFET with photo-sensitive polymers to realize ISEFT glucose sensor. This IC technology-compatible glucose sensor showed good sensing characteristics in the wide range of 10-1000 mg/dl glucose concentrations.

  • PDF

Synthesis of pH-Sensitive Hydrogel Nanoparticles in Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 pH 감응성 하이드로젤 입자의 합성)

  • Yang, Juseung;Ryu, Won;Lee, Sangmin;Kim, Kyusik;Choi, Moonjae;Lee, Youngmoo;Kim, Bumsang
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.453-458
    • /
    • 2009
  • Recently, new methods to synthesize and process polymers without toxic organic solvents are needed in order to solve environmental problems. The use of supercritical carbon dioxide as a solvent for the polymer synthesis is attractive since it is non-toxic, non-flammable, naturally abundant, and the product may be easily separated from the solvent. In this study, we developed the method using super critical $CO_2$ to prepare P(MAA-co-EGMA) hydrogel nanoparticles as an intelligent drug delivery carrier. The effects of concentrations of PtBuMA-PEO as a dispersion stabilizer and AIBN as an initiator on the particle synthesis were investigated. When PtBuMA-PEO concentration increased, the particle size decreased. However, there was no significant difference in the particle size according to the AIBN concentration. There was a drastic change of the equilibrium weight swelling ratio of P(MAA-co-EGMA) hydrogel nanoparticles at a pH of around 5, which is the $pK_a$ of PMAA. At a pH below 5, the hydrogels were in a relatively collapsed state but at a pH higher than 5, the hydrogels swelled to a high degree. In release experiments using Rh-B as a model solute, the P(MAA-co-EGMA) hydrogel nanoparticles showed a pH-sensitive release behavior. At low pH(pH 4.0) a small amount of Rh-B was released while at high pH(pH 6.0) a relatively large amount of Rh-B was released from the hydrogels.

Formation of Complex Between Polyelectrolytes and pH/Temperature Sensitive Copolymers (고분자전해질과 pH/온도감응성 고분자 사이의 복합체 형성에 관한 연구)

  • Yoo, Mi Kyong;Sung, Yong Kiel
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.1
    • /
    • pp.84-91
    • /
    • 1998
  • Random copolymers of N-isopropyl acrylamide (NIPAAm) and acrylic acid (AAc) which exhibit temperature- and pH-responsive behavior were synthesized by free-radical polymerization. The copolymers were characterized by means of FT-IR spectrometry and titration. The influence of polyelectrolyte on the lower critical solution temperature (LCST) of pH/temperature-sensitive polymers was investigated in the pH range of 2-12. The LCSTs of PNIPAAm/water in poly(NIPAAm-co-AAc) were determined by cloud-point measurements. A polyelectrolyte complex was prepared by mixing poly(NIPAAm-co-AAc) with poly(allylamine) (PAA) or poly(L-lysine) (PLL) solutions as anionic and cationic polyelectrolytes, respectively. Back titration was performed to determine the content of AAc and to study the effect of comonomer ionization on the LCST. The LCSTs of PNIPAAm/water in the copolymers were strongly affected by pH, presence of polyelectrolyte, AAc content, and charge density on the polymer. The polyelectrolyte complexes were formed at neutral condition. The influence of more hydrophobic PLL as polyelectrolyte on the cloud-point of PNIPAAm/water in the copolymer was stronger than that of poly(allylamine) (PAA).

  • PDF

Poly(L-lysine) Based Semi-interpenetrating Polymer Network as pH-responsive Hydrogel for Controlled Release of a Model Protein Drug Streptokinase

  • Park, Yoon-Jeong;Jin Chang;Chen, Pen-Chung;Victor Chi-Min Yang
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.5
    • /
    • pp.326-331
    • /
    • 2001
  • With the aim of developing of pH-sensitive controlled drug release system, a poly(Llysine) (PLL) based cationic semi-interpenetrating polymer network (semi-IPN) has been synthesized. This cationic hydrogel was designed to swell at lower pH and de-swell at higher pH and therefore be applicable for achieving regulated drug release at a specific pH range. In addition to the pH sensitivity, this hydrogel was anticipated to interact with an ionic drug, providing another means to regulate the release rate of ionic drugs. This semi-IPN hydrogel was prepared using a free-radical polymerization method and by crosslinking of the polyethylene glycol (PEG)-methacrylate polymer through the PLL network. The two polymers were penetrated with each other via interpolymer complexation to yield the semi-IPN structures. The PLL hydrogel thus prepared showed dynamic swelling/de-swelling behavior in response to pH change, and such a behavior was influenced by both the concentrations of PLL and PEG-methacrylate. Drug release from this semi-IPN hydrogel was also investigated using a model protein drug, streptokinase. Streptokinase release was found to be dependent on its ionic interaction with the PLL backbones as well as on the swelling of the semi-IPN hydrogel. These results suggest that a PLL semi-IPN hydrogel could potentially be used as a drug delivery platform to modulate drug release by pH-sensitivity and ionic interaction.

  • PDF

Physicochemical Characteristics of Fe3O4 Magnetic Nanocomposites Based on Poly(N-isopropylacrylamide) for Anti-cancer Drug Delivery

  • Davaran, Soodabeh;Alimirzalu, Samira;Nejati-Koshki, Kazem;Nasrabadi, Hamid Tayefi;Akbarzadeh, Abolfazl;Khandaghi, Amir Ahmad;Abbasian, Mojtaba;Alimohammadi, Somayeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.49-54
    • /
    • 2014
  • Background: Hydrogels are a class of polymers that can absorb water or biological fluids and swell to several times their dry volume, dependent on changes in the external environment. In recent years, hydrogels and hydrogel nanocomposites have found a variety of biomedical applications, including drug delivery and cancer treatment. The incorporation of nanoparticulates into a hydrogel matrix can result in unique material characteristics such as enhanced mechanical properties, swelling response, and capability of remote controlled actuation. Materials and Methods: In this work, synthesis of hydrogel nanocomposites containing magnetic nanoparticles are studied. At first, magnetic nanoparticles ($Fe_3O_4$) with an average size 10 nm were prepared. At second approach, thermo and pH-sensitive poly (N-isopropylacrylamide -co-methacrylic acid-co-vinyl pyrrolidone) (NIPAAm-MAA-VP) were prepared. Swelling behavior of co-polymer was studied in buffer solutions with different pH values (pH=5.8, pH=7.4) at $37^{\circ}C$. Magnetic iron oxide nanoparticles ($Fe_3O_4$) and doxorubicin were incorporated into copolymer and drug loading was studied. The release of drug, carried out at different pH and temperatures. Finally, chemical composition, magnetic properties and morphology of doxorubicin-loaded magnetic hydrogel nanocomposites were analyzed by FT- IR, vibrating sample magnetometry (VSM), scanning electron microscopy (SEM). Results: The results indicated that drug loading efficiency was increased by increasing the drug ratio to polymer. Doxorubicin was released more at $40^{\circ}C$ and in acidic pH compared to that $37^{\circ}C$ and basic pH. Conclusions: This study suggested that the poly (NIPAAm-MAA-VP) magnetic hydrogel nanocomposite could be an effective carrier for targeting drug delivery systems of anti-cancer drugs due to its temperature sensitive properties.