• Title/Summary/Keyword: pH of drainage

Search Result 286, Processing Time 0.026 seconds

Water Chemistry Characteristics and Fish Fauna of Sodo Stream Watershed in Taebaeksan Provincial Park (태백산 도립공원 내 소도천 수계의 이·화학적 수질 특성 및 어류상)

  • Han, Jeong-Ho;Paek, Woon Kee
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.1
    • /
    • pp.71-80
    • /
    • 2016
  • The fauna of freshwater fish and water chemistry characteristics were investigated from June, 2014 to October, 2014 at 10 sites in Taebaeksan Provincial Park. A total of 7 species under three families were collected from the survey sites and among them one endangered species - Koreocobitis naktongensis - was identified. The endemic species of Korea were 2 species: Koreocobitis naktongensis, Iksookimia koreensis. Dominant species was Rhynchocypris oxycephalus(89%) and subdominant species was Orthrias nudus(8.9%). Water quality including conductivity, turbidity, pH and total dissolved solids(TDS) varied largely depending on the sampling locations. Values of ambient conductivity and TDS were greater in the upstream than in the downstream, and seasonal variabilities were also higher in the upstream. The pH decreased towards the downstream, and especially showed a sharp decrease in S5. This phenomenon was evident due to a dilution by the influx in the acid mine drainage(AMD) of S4. Physical habit conditions, based on qualitative habitat evaluation index(QHEI) model, indicated a "Sub-optimal" condition(mean: 157.3; range: 78 ~ 194) in the Sodo stream watersheds.

Distribution of Metallic Elements Contamination in River Deposits and Farmland in the Vicinity of an Abandoned Korean Mine (폐광산 인근 농경지 및 하천 퇴적토의 중금속 오염 특성)

  • Lee, Hwan;Lee, Yoonjin
    • Economic and Environmental Geology
    • /
    • v.53 no.2
    • /
    • pp.133-145
    • /
    • 2020
  • Soil in mine waste-rock fields, and at the pithead, sediments and farmlands around an abandoned mine in the Chungcheong Province of South Korea were investigated to assess the distribution of metallic elements and to understand the scope of the pollution. Reddening was observed from the mine up to a distance of 61 m. Losses of waste rock around the mine were assessed over a section of 1800 ㎥. Yellowish precipitates on the bottom of a stream were identified as ferrihydrite and goethite. For anions, a mean sulfate ion level over 773.6 mg/L was found during August in the river water samples. Mine drainage at the site was shown to have a pH of 4.9 and a sulfate concentration of 1557.8 mg/L during the August rainy season. A possible cause of the metallic element contamination in the mine is waste-rock loss, because mine waste-rock is located on the slope in this area. In conclusion, the total soil area to be treated, based on the amount that exceeded the recommended Korean soil pollution levels, was assessed to be 10,297 ㎡.

DECREASING CATIONIC DEMAND OF PEROXIDE-BLEACHED THERMOMECHANICAL PULP WITH PECTINASE ENZYME INCREASES FINES AND FILER RETENTION

  • Ian Reid;Michelle Ricard
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.84-89
    • /
    • 1999
  • Treatment with the enzyme pectinase has been reported to lower the cationic demand of thermomechanical pulp(TMP) bleached with alkaline peroxide in the laboratory. We have extended this discovery to bleached TMP produced industrially, and shown that commercial enzyme preparations can treat pulp within 15 minutes at the at the temperature and pH values prevalent in paper mills. About half of the cationic demand in the bleached pulp can be destroyed by pectinase. Dynamic drainage jar experiments show that the enzyme treatment improves the effectiveness of several cationic polymers to increase retention in the absence of retention aids or with non-ionic polymers, and does not damage the strength properties of the pulp. Pectinase could be easily incorporated into paper machine stock preparation systems to lower the charges of cationic retention aids needed in furnishes containing peroxide-bleached mechanical pulp.

Remediation Design of Acid Rock Drainage (ARD) from Goro Abandoned Mine (고로폐광산 침출수 처리대책 설계)

  • Choi, Jung-Chan;Lee, Min-Hee
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.2
    • /
    • pp.1-10
    • /
    • 2004
  • The purpose of this study is to evaluate a laboratory test on arsenic reduction efficiency for ARD (Acid Rock Drainage) using limestone and apatite, and to design an apatite drain system. As a result of the laboratory test, results of this study show that pH, arsenic removal ratio, and dissolution amount of limestone & apatite are inversely proportional to flow rates, and apatite removes 100% of arsenic at 0.6 ml/min/kg flow rate. It is supposed that dissolution rate of apatite is ten times higher than that of limestone. The arsenic compounds are assumed to be Johnbaumnite, and/or Ca-arsenic hydrate. According to the results of the laboratory test, apatite drain system is designed as follow; Sixty two tons of apatite will be needed per one year and six months, and the precipitates will be removed from the precipitation pond per 3 months.

Environmental Characteristics of Waste Tire for Use as Soil Reinforcement (지반보강재로서 폐타이어 사용에 따른 환경영향 분석)

  • Cho, Jinwoo;Lee, Yongsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.61-68
    • /
    • 2013
  • This paper presents an experimental results on the environmental characteristics of waste tire. Experimental program includes a set of laboratory leaching tests and field pilot test for leachate analysis. Laboratory tests were conducted to illustrate how properties such as TOC, pH, turbidity and Zn change with tire sizes and drain conditions. In field pilot test, water samples were collected form a drainage system installed below the tire-reinforced retaining wall and analyzed for chemical quality. Laboratory leaching tests performed on various particle sizes of waste tire indicated that as tire size is increased, the concentration of leachate is decreased. In continuous flow column tests, the concentration of leachate decreased with the number of exposure periods or pore volumes flushed through the waste tire. However, during pause flow column tests, the concentration of leachates were increased with time. Field monitoring of effluent indicated that no significant adverse effects on ground water quality had occurred over a period of 12 months.

Characteristics of Water Contamination and Precipitates of Acid Mine Drainage, Bongyang Abandoned Coal Mine, Danyang, Chungbuk Province with Emphasis on Fe and Al behaviors (충북 단양 봉양폐탄광 산성광산배수의 수질오염과 침전물의 특성: 철, 알루미늄의 거동을 중심으로)

  • Choo, Chang Oh;Lee, Jin Kook
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.163-183
    • /
    • 2019
  • We investigated acid mine drainage (AMD) of Bongyang abandoned coal mine, Danyang, Chungbuk Province with emphasis on geochemical contaminants in AMD and precipitates using chemical analyses, XRD, SEM, IR, and $^{27}Al$ NMR. Water chemistry changes with pH and oversaturation of chemical species. According to calculation of saturation index, the AMD is saturated with various Fe, Al minerals. Orange or orcher precipitates are composed of schwertmannite and goethite, associated with Leptothrix orchracea bacteria, whereas whitish precipitates are composed mostly of alumimous minerals such as basaluminite with poor crystallinity. The whitish precipitates include trace $Al_{13}$-Tridecamer. It is important to control the precipitation and solubility of aluminous species for ensuring remediation and control for the AMD discharged from the Bongyang abandoned coal mine.

Adsorption of Heavy Metals on Sludge from the Treatment Process of Acid Mine Drainage (산성광산배수(AMD) 처리(處理) 슬러지의 중금속(重金屬) 흡착(吸着) 특성(特性))

  • Song, Young-Jun;Lee, Gye Seung;Shin, Kang Ho;Kim, Youn-Che;Seo, Bong Won;Yoon, Si-Nae
    • Resources Recycling
    • /
    • v.21 no.4
    • /
    • pp.35-43
    • /
    • 2012
  • This study was carried out for the purpose of obtaining basic data to utilize the AMD sludge as sorbent for heavy metal ions. The sludge from the treatment process of Acid Mine Drainage mainly consists of fine iron hydroxide or iron oxide hydrate and calcite, and the fine iron hydroxide or iron oxide hydrate has a property of adsorbing heavy metal ions. In this study, we investigated the physical property of the AMD sludge like as mineral composition, particle size and shape and chemical composition and also investigated the influence of dosage of sludge, adsorbing time, pH, initial concentration and sintering temperature on the adsorption of heavy metal ions.

Evaluation about Contaminant Migration Near Abandoned Mine in Central Region (중부지역에 위치한 폐광산 주변의 오염물질 이동성 평가)

  • Lee, Jong-Deuk;Kim, Tae-Dong;Jeon, Gee-Seok;Kim, Hee-Joung
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.29-36
    • /
    • 2010
  • Several mines including Namil, Solim and Jungbong which are located in the Gyeonggi and Kangwon province have been abandoned and closed since 1980 due to "The promotion policy of mining industry". An enormous amount of mining wastes was disposed without proper treatment, which caused soil pollution in tailing dam and ore-dressing plant areas. However, any quantitative assessment was not performed about soil and water pollution by transporting mining wastes such as acid mine drainage, mine tailing, and rocky waste. In this research, heavy metals in mining wastes were analyzed according to leaching method which used 0.1 N HCl and total solution method which used Aqua-regia to recognize the ecological effect of distance from hot spot. We sampled tailings, rocky wastes and soils around the abandoned mine. Chemical and physical parameters such as pH, electrical conductivity (EC), total organic carbon (TOC), soil texture and heavy metal concentration were analyzed. The range of soil's pH is between 4.3 and 6.4 in the tailing dam and oredressing plant area due to mining activity. Total concentrations of As, Cu, and Pb in soil near ore dressing plant area are 250.9, 249.3 and 117.2 mg/kg respectively, which are higher than any other ones near tailing dam area. Arsenic concentration in tailing dams is 31.0 mg/kg, which is also considered as heavily polluted condition comparing with the remediation required level(RRL) in "Soil environment conservation Act".

Fe and Al Behaviors in Precipitates and Pollution Characteristics of Acid Mine Drainage from the Donghae Abandoned Coal Mine, Taebaek, Korea (태백시 동해폐탄광 산성광산배수의 오염현황과 하상퇴적물 내 철, 알루미늄의 거동특성)

  • Choo, Chang Oh;Park, Jung-Won;Lee, Jin Kook
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.579-598
    • /
    • 2019
  • We investigated geochemical contaminants and Fe, Al behavior in precipitates of acid mine drainage (AMD) from the Donghae abandoned coal mine, Taebaek, Gangwon Province using aqueous chemical analyses, XRD, IR, and 27Al NMR, Our results showed that water chemistry changed with pH and Eh, and saturation indices of chemical species in the AMD. According to saturation calculated by visual MINTEQ, the AMD was saturated with various Fe-, Al-oxyhydroxide minerals. Reddish brown precipitates are composed of schwertmannite, ferrihydrite, and goethite, whereas whitish precipitates are composed mostly of alumimous minerals such as poorly crystallized basaluminite with trace Al13-Tridecamer. It is important to apply active treatment methods rather than simple storage pond and to control the precipitation and solubility of iron species and aluminous species for ensuring remediation and control for the AMD discharged from the Donghae abandoned coal mine.

Study on Organic Material Used in Bioreactor for the Treatment of Acid Mine Drainage (산성 광산 폐수 처리용 생물반응기에 사용되는 유기물의 연구)

  • 김경호;나현준;이성택
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.45-50
    • /
    • 1997
  • The change of industrial structure has brought the sharp declination of mine products, and has made many mines closed, which results in environmental pollution by untreated acid mine drainage(AMD). AMD with low pH and high concentration of heavy metals could severely destroy the ecosystem. Many researches have been carried out for the treatment of AMD. In this study, we have treated AMD with oak compost, mushroom compost, sludge cake and cow manure which usually used in AMD treatment systems, and compared the capability of each organic matter. Cow manure and oak compost have been most effective among 4 organic materials. Oak compost removed the heavy metals by ion exchange between Ca-rich particles and soluble heavy metal ions. It also captured the heavy metals using bound functional groups like -OH and -COO-. Sulfate reducing bacteria existing in the cow manure removed effectively heavy metals by producing metal sulfide compound. Therefore, it is effective to use both organic materials in mixture on the treatment of AMD.

  • PDF