• Title/Summary/Keyword: pH electrode

Search Result 692, Processing Time 0.034 seconds

Effect of Anionic Polyelectrolyte on Alumina Dispersions for Ru Chemical Mechanical Polishing

  • Venkatesh, R. Prasanna;Victoria, S. Noyel;Kwon, Tae-Young;Park, Jin-Goo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.24.2-24.2
    • /
    • 2011
  • Ru is used as a bottom electrode capacitor in dynamic random access memories (DRAMs) and ferroelectric random access memories (FRAMs). The surface of the Ru needs to be planarized which is usually done by chemical mechanical polishing (CMP). Ru CMP process requires chemical slurry consisting of abrasive particles and oxidizer. A slurry containing NaIO4 and alumina particles is already proposed for Ru CMP process. However, the stability of the slurry is critical in the CMP process since if the particles in the slurry get agglomerated it would leave scratches on the surface being planarized. Thus, in the present work, the stability behavior of the slurry using a suitable anionic polyelectrolyte is investigated. The parameters such as slurry pH, polyelectrolyte concentration, adsorption time and the sequence of addition of chemicals are optimized. The results show that the slurry is stable for longer time at an optimized condition. The polishing behavior of the Ru using the optimized slurry is also investigated.

  • PDF

ITO Extended Gate Reduced Graphene Oxide Field Effect Transistor For Proton Sensing Application

  • Truong, Thuy Kieu;Nguyen, T.N.T.;Trung, Tran Quang;Son, Il Yung;Kim, Duck Jin;Jung, Jin Heak;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.653-653
    • /
    • 2013
  • In this study, ITO extended gate reduced graphene oxide field effect transistor (rGO FET) was demonstrated as a transducer for a proton sensing application. In this structure, the sensing area is isolated from the active area of the device. Therefore, it is easy to deposit or modify the sensing area without affecting on the device performance. In this case, the ITO extended gate was used as a gate electrode as well as a proton sensing material. The proton sensing properties based on the rGO FET transducer were analyzed. The rGO FET device showed a high stability in the air ambient with a TTC encapsulation layer for months. The device showed an ambipolar characteristic with the Dirac point shift with varying the pH solutions. The sensing characteristics have offered the potential for the ion sensing application.

  • PDF

Characteristics of Nano-dispersed Powder by Electric Explosion of Conductors

  • Kwon, Young-Soon;Kim, Ji-Soon;Moon, Jin-Soo;Kim, Hwan-Tae;Ilyin, Alexander-P;Rhee, Chang-Kyu;Rim, Geun-Hie
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.430-435
    • /
    • 2003
  • The phenomenon of electrical explosion of conductors is considered in the context of the changes in the energy and structural states of the metal at the stages of energy delivery and relaxation of the primary products of EEC. It is shown that these changes are related to the forced interaction of an intense energy flux with matter and to the subsequent spontaneous relaxation processes. The characteristics of nano-sized metal powders are also discussed. The preferential gas media during EEC is Ar+$H_2$. An increase in $e/e_s$ (in the range of values studied) leads to a reduction in the metal content. For reactive powders obtained with high metal content, it is necessary to separate the SFAP fractions, which settled on the negative electrode of the electric filter.

Spinach Root-Tissue Based Amperometric Biosensor for the Determination of Hydrogen Peroxide (시금치 뿌리 조직 바이오센서를 이용한 과산화수소의 정량)

  • Lee, Beom-Gyu;Yoon, Kil-Joong;Kwon, Hyo-Shik
    • Analytical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.315-322
    • /
    • 2000
  • The response characteristics of the bioelectrode developed by the co-immobilization of spinach root tissue and ferrocene in a carbon paste matrix for the amperometric determination of hydrogen peroxide were evaluated. In the range of electrode potential examined (-0.3~0.0V vs. Ag/AgCl). the response time was relatively short ($t_{95%}=11.8$ sec) and it responded in the wide range of pH. Also, its detection limit was $2.25{\times}10^{-6}M$ (S/N=3) and a relative standard deviation of the measurements which were repeated 15 times using $1.0{\times}10^{-3}M$ hydrogen peroxide was 1.87%. The bioelectrode sensitivity decreased to 40% of the original value in 19 days of continuous use.

  • PDF

Biological Assay of Mercury and Cadmium Ions Using DNA Immobilized on a Nanotube Paste Electrodes

  • Ly, Suw-Young;Lee, Chang-Hyun;Jung, Hong-Rak;Park, Kwang-Ho;Park, Yong-Keun;Suk, Hong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.302-310
    • /
    • 2012
  • Bio assay of mercury and cadmium ions were searched using voltammetric analysis using DNA doped carbon nanotube paste electrodes (DCP). The square-wave stripping voltammetryic optimized results indicated working ranges of 1-10.0 $ngL^{-1}$ and 20-100 $ugL^{-1}$, Hg(II) Cd(II) within an accumulation time of 120 seconds, in 0.1-M phosphate buffer solutions of pH 6.3. The relative standard deviations of 5 $ngL^{-1}$ Hg(II) and Cd(II) that observed were 0.14 and 0.22% (n=12), respectively, using optimum conditions. The low detection limit (S/N) was pegged at 0.1 $ngL^{-1}$ ($4.9{\times}10^{-11}M$) Hg(II) and 0.2 $ngL^{-1}$ ($1.77{\times}10^{-10}M$) Cd(II). The developed methods can be applied to assays in biological fish kidneys and water samples.

Detection of Organic Vapors Using Change of Fabry-Perot Fringe Pattern of Surface Functionalized Porous Silicon (표면 기능성을 가진 다공성 실리콘의 Fabry-Perot fringe pattern의 변화를 이용한 유기 화합물의 감지)

  • Hwang, Minwoo;Cho, Sungdong
    • Journal of Integrative Natural Science
    • /
    • v.3 no.3
    • /
    • pp.168-173
    • /
    • 2010
  • Novel porous silicon chip exhibiting dual optical properties, both Frbry-Perot fringe (optical reflectivity) and photoluminescence had been developed and used as chemical sensors. Porous silicon samples were prepared by an electrochemical etch of p-type sillicon wafer (boron-doped, <100> orientation, resistivity 1 - 10 ${\Omega}$). The ething solution was prepared by adding an equal volume of pure ethanol to an aqueous solution of HF (48% by weight). The porous silicon was illuminated with a 300 W tungsten lamp for the duration of etch. Ething was carried out as a two-electrode Kithley 2420 preocedure at an anodic current. The surface of porous silicon was characterized by FT-IR instrument. The porosity of samples was about 80%. Three different types of porous silicon, fresh porous silicon (Si-H termianated), oxidized porous silicon (Si-OH terminated), and surface-derivatized porous silicon (Si-R terminated), were prepared by the thermal oxidation and hydrosilylation. Then the samples were exposed to the wapor of various organics vapors. such as chloroform, hexane, methanol, benzene, isopropanol, and toluene. Both reflectivity and photoluminescence were simultaneously measured under the exposure of organic wapors.

Effect of operating conditions of high voltage impulse on generation of hydroxyl radical (고전압 펄스의 수중인가 조건이 하이드록실 라디칼 생성에 미치는 영향)

  • Cho, Seung-Yeon;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.611-618
    • /
    • 2017
  • Recently, applications of high voltage impulse (hereafter HVI) technique to desalting, sludge solubilization and disinfection have gained great attention. However, information on how the operating condition of HVI changes the water qualities, particularly production of hydroxyl radical (${\cdot}OH$) is not sufficient yet. The aim of this study is to investigate the effect of operating conditions of the HVI on the generation of hydroxyl radical. Indirect quantification of hydroxyl radical using RNO which react with hydroxyl radical was used. The higher HVI voltage applied up to 15 kV, the more RNO decreased. However, 5 kV was not enough to produce hydroxyl radical, indicating there might be an critical voltage triggering hydroxyl radical generation. The concentration of RNO under the condition of high conductivity decreased more than those of the low conductivities. Moreover, the higher the air supplies to the HVI reactor, the greater RNO decreased. The conditions with high conductivity and/or air supply might encourage the corona discharge on the electrode surfaces, which can produce the hydroxyl radical more easily. The pH and conductivity of the sample water changed little during the course of HVI induction.

A Study on Escherichia Coli Disinfection by the Electrochemical Method for Small Sewerage System (소규모 오수처리를 위한 전기화학적 방법에 의한 대장균 소독에 관한 연구)

  • Park, Young-Seek;Jeong, No-Sung;Kim, Dong-Seog
    • Journal of Environmental Science International
    • /
    • v.16 no.4
    • /
    • pp.441-447
    • /
    • 2007
  • This study was carried out to investigate the effect of electrochemical (EC) disinfection of artificial wastewater contaminated by Escherichia coli culture. Circulated batch type electrochemical disinfection system using three plates electrodes was used. Also, the several factors (pH, ORP, DO, temperature, current, conductivity) were measured in order to investigate the fundamental design factor in the EC disinfection system. It was demonstrated that the EC process was highly effective for wastewater disinfection. At the constant voltage, the disinfection efficiency was increased according to time. The disinfection efficiency and current increased as the increase of voltage. The variation of conductivity was a little related to the variation of CFU (colony forming units). The differences in disinfection efficiency according to the ice pack and the variation of electrodes were not occurred. The EC disinfection efficiency and current increased according to the increase of circulating flow rate.

Improved Sensitivity of a Glucose Sensor by Encapsulation of Free GOx in Conducting Polymer Micropillar Structure

  • Jung, Shin-Hwan;Lee, Young-Kwan;Son, Yong-Keun
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.124-129
    • /
    • 2011
  • A simple process of fabricating micropillar structure and its influence upon enhancing electrochemical biosensor response were studied in this work. Conducting polymer PEDOT was used as a base material in formulating a composite with PVA. Micro porous PC membrane filter was used as a template for the micropillar of the composite on ITO electrode. This structure could provide plenty of encapsulating space for enzyme species. After dosing enzyme solution into this space, Nafion film tent was cast over the pillar structure to complete the micropillar cavity structure. In this way, the encapsulation of enzyme could be accomplished without any chemical modification. The amount of enzyme species was easily controllable by varying the concentration of the dosing solution. The more amount of enzyme is stored in the sensor, the higher the electrochemical response is produced. One more reason for the sensitivity improvement comes from the large surface area of the micropillar structure. Application of 0.7 V produced the best current response under the condition of pH 7.4. This biosensor showed linear response to the glucose in 0.1~1 mM range with the average sensitivity of $14.06{\mu}A/mMcm^2$. Detection limit was 0.01 mM based on S/N = 3.

Simple fabrication process and characteristic of a screen-printed triode-CNT field emission arrays for the flat lamp application

  • Jung, Y.J.;Park, J.H.;Jeon, S.Y.;Park, S.J.;Alegaonkar, P.S.;Yoo, J.B.;Park, C.Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1214-1218
    • /
    • 2006
  • We introduced simple fabrication process for field emission devices based on carbon nanotubes (CNTs) emitters. Instead of using the ITO material as a transparent electrode, a metal (Au) with thickness of 5-20nm was used. Moreover, the ITO patterning process was eliminated by depositing metal layer, before the CNT printing process. In addition, the thin metal layer on photo resist (PR) layer was used as UV block. We fabricated the CNT field emission arrays of triode structure with simple process. And I-V characteristics of field emission arrays were measured. The maximum current density of $254{\mu}A/cm2$ was achieved when the gate and the anode voltage was kept 150V and 3000V, respectively. The distance between anode and cathode was kept constant.

  • PDF