• 제목/요약/키워드: pH electrode

검색결과 692건 처리시간 0.039초

Surface Renewable Hydrogen Ion-Selective Polymeric Composite Electrode Containing Iridium Oxide

  • Quan, Hongmei;Kim, Won;Chung, Koo-Chun;Park, Jong-Man
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권10호
    • /
    • pp.1565-1568
    • /
    • 2005
  • A surface renewable pH electrode was prepared by utilizing composite electrode technique. Iridium oxide micro-fine particles was prepared by hydrolysis of $(NH_4)_2IrCl_6$ at elevated temperature. The iridium oxide particles were mixed with well-dispersed carbon black and then filtered. The mixture was suspended in DMF containing PVC as a binder. The mixture was precipitated rapidly by adding large amount of water. The precipitate was ground and pressure-molded to iridium oxide composite electrode material. The electrode showed linear response between pH 1-13 with 50 to 60 mV/pH slope. The electrode maintained the pH response without appreciable slope drift for 170 days if stored in deionized water. The electrode surface can be renewed reproducibly by simple grinding process whenever contaminated or deactivated.

Disposable Solid-State pH Sensor Using Nanoporous Platinum and Copolyelectrolytic Junction

  • Noh, Jong-Min;Park, Se-Jin;Kim, Hee-Chan;Chung, Taek-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3128-3132
    • /
    • 2010
  • A disposable solid-state pH sensor was realized by utilizing two nanoporous Pt (npPt) electrodes and a copolyelectrolytic junction. One nanoporous Pt electrode was to measure the pH as an indicating electrode (pH-IE) and the other assembled with copolyelectrolytic junction was to maintain constant open circuit potential ($E_{oc}$) as a solid-state reference electrode (SSRE). The copolyelectrolytic junction was composed of cationic and anionic polymers immobilized by photo-polymerization of N,N'-methylenebisacrylamide, making buffered electrolytic environment on the SSRE. It was expected to make. The nanoporous Pt surrounded by a constant pH excellently worked as a solid state reference electrode so as to stabilize the system within 30 s and retain the electrochemical environment regardless of unknown sample solutions. Combination between the SSRE and the pH-IE commonly based on nanoporous Pt yielded a complete solid-state pH sensor that requires no internal filling solution. The solid state pH sensing chip is simple and easy to fabricate so that it could be practically used for disposable purposes. Moreover, the solid-state pH sensor successfully functions in calibration-free mode in a variety of buffers and surfactant samples.

Tribenzylamine Ionophore를 이용한 pH-ISE의 제조 및 임상응용 (Preparation and Clinical Application of pH-ISE(Ion Selective Electrode) Based on Tribenzylamine Ionophore)

  • 조동회;박정오
    • 대한임상검사과학회지
    • /
    • 제38권1호
    • /
    • pp.59-64
    • /
    • 2006
  • The pH-ISE(ion selective electrode) based on tribenzylamine as a hydrogen ion carrier was prepared and its electrochemical characterization was studied. It responded linearly to hydrogen ions in the range of pH 3.1 - pH 11.0 and the Nernstian slope showed 55.0 mV/pH (at $20{\pm}0.2^{\circ}C$), it also showed a fast response time of 8 sec. When it was directly applied to human blood(pH 6.0-8.5), we could get the same satisfying results. A good reproducibility and stability were shown with the precision of 2 mV (${\pm}0.1$). The pH-ISE based on tribenzylamine exhibited biocompatibility in clinical applications.

  • PDF

키틴 막 전극의 양이온에 대한 감응 연구 (Potentiometric Response of Chitin - based Membrane Electrode to various Metal cations)

  • 최분홍;윤영자
    • 분석과학
    • /
    • 제11권4호
    • /
    • pp.235-242
    • /
    • 1998
  • 이온 운반 물질로 키틴(poly-[$1{\rightarrow}4$]-${\beta}$-acetyl-D-glucosamine)을 사용하고, 지지체(matrix)로 Poly(vinyl chloride)(PVC)를, 가소제로는 Dioctyl sebacate(DOS)를 사용하여 키틴 막 전극을 제작하였다. 얇은 조각 형태의 키틴을 막자사발로 갈아 100 메시(mesh)의 체에 거른 후, 이때 모아진 일정 크기의 미세 가루를 사용하였다. 키틴 막 전극을 지시 전극으로 사용하여 금속 양이온들의 감응전위를 알아본 결과, 특히 $Cd^{2+}$$Cu^{2+}$에 대한 감응전위를 기울기(mV/decade)는 바탕 전해질이 pH 4 acetate buffer에서 각각 34.9 mV/decade, 34.0 mV/decade로 다른 금속 양이온들에 비하여 크게 나타났다. 또한 pH 영향을 조사해 본 결과, pH 2~12 범위에서 전위값이 일정하게 유지되었다.

  • PDF

Methanol, N,N-dimethylformamide 및 Acetonitrile 속에서 유리전극의 pH 응답성 (The Response Characteristic of Hydrogen-responsive Glass Electrode in Methanol, N, N-dimethylformamide and Acetonitrile)

  • 문수찬
    • 대한화학회지
    • /
    • 제16권3호
    • /
    • pp.149-156
    • /
    • 1972
  • 메타놀, N,N-디메칠포름아미드 및 아세토니트릴 속에서 유리전극의 pH 응답성을 여러가지 pH의 완충용액으로 시험한 바 전극을 물속에 보관하는 것보다 측정하고저 하는 용매속에 보관하는 것이 더 빨리 전위가 안정되었다. 같은 용매에서 용액의 염기성에 비례하여 응답속도가 느리고 강염기성 용액에서는 안정한 전위를 얻기 어려웠다. 산성용액에서의 pH 응답성은 보다 빠르나 같은 용액의 pH 측정에서도 전극의 사용한 이력에 따라 응답성과 측정치에 차이가 생겼다.

  • PDF

The Electrocatalytic Reduction of Molecular Oxygen with a Co(Ⅱ)-Glyoxal Bis(2-hydroxyanil) Complex Coated Electrode

  • 정의덕;원미숙;심윤보
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권4호
    • /
    • pp.417-422
    • /
    • 1998
  • The electrocatalytic reduction of molecular oxygen was investigated with a Co(II)-glyoxal bis(2-hydroxyanil) complex coated-glassy carbon (GC) electrode in aqueous media. The reduction of $O_2$ at the modified electrode was an irreversible and diffusion-controlled reaction. The complex coated-GC electrode demonstrated an excellent electrocatalytic effect for $O_2$ reduction in an acetate buffer solution of pH 3.2. The coated electrode made the $O_2$ reduction potential shift of 60-510 mV in a positive direction compared to the bare GC electrode depending on pH. The Co(II)-glyoxal bis(2-hydroxyanil) coated electrode converted about 51% of the $O_2$ to $H_2O_2$ via a two-electron reduction pathway, with the balance converted to H_2O$.

나노 Ruthenium Oxide 고분자 복합재료 pH전극 (Nano-Ruthenium Oxide Polymeric Composite pH Electrodes)

  • 박종만
    • 대한화학회지
    • /
    • 제62권4호
    • /
    • pp.269-274
    • /
    • 2018
  • 금속산화물 고분자 복합재료전극 제조기법을 수소이온 감응성이 높은 $RuO_2$에 적용하여 표면연마가 가능한 나노 $RuO_2$ 복합재료 pH전극을 제조하였다. $RuO_2$ 함량 53 wt%을 가지는 나노 $RuO_2$ 복합재료 전극의 경우 나노 $IrO_2$ 복합재료 전극과 비슷한 수소이온 감응특성을 나타내었다. pH 1~9의 범위에서 이론치에 가까운 -58.7 mV/pH의 감응기울기, 1초 이하의 감응속도, 평균 $-57.0{\pm}0.3mV/pH$ (n=5)의 표면재생성, 장기 안정성 등 제반 특성과 전기화학적으로 활성이 높은 화학종에 의한 방해효과도 비슷하게 나타났다. 그러나 pH 10 이상의 염기성 용액에서의 감응기울기와 감응속도는 나노 $IrO_2$ 복합재료전극에 비하여 현저히 떨어지는 결과를 보였으며 이는 복합재료 매질 속의 금속산화물 함량에 따른 물리적 성질 차이에 따른 것으로 추측된다.

Flow-Accelerated Corrosion Behavior of SA106 Gr.C Steel in Alkaline Solution Characterized by Rotating Cylinder Electrode

  • Kim, Jun-Hwan;Kim, In-Sup
    • Nuclear Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.595-604
    • /
    • 2000
  • Flow-Accelerated Corrosion Behavior of SA106 Gr.C steel in room temperature alkaline solution simulating the CANDU primary water condition was studied using Rotating Cylinder Electrode. Systems of RCE were set up and electrochemical parameters were applied at various rotating speeds. Corrosion current density decreased up to pH 10.4 then it increased rapidly at higher pH. This is due to the increasing tendency of cathodic and anodic exchange half-cell current. Corrosion potential shifted slightly upward with rotating velocity. Passive film was formed from pH 9.8 by the mechanism of step oxidation and the subsequent precipitation of ferrous species into hydroxyl compound. Above pH 10.4, the film formation process was active and the film became stable. Corrosion current density showed increment in pH 6.98 with the rotating velocity, while it soon saturated from 1000 rpm above pH 9.8. This seems that activation process which represents formation of passive film on the bare metal surface controls the entire corrosion process

  • PDF

전기화학적 방법에 의한 HRP의 최적 pH 도출 (Electrochemical Determination of the Optimum pH of HRP)

  • 윤길중
    • 분석과학
    • /
    • 제16권6호
    • /
    • pp.504-508
    • /
    • 2003
  • A carbon paste electrode was constructed with peroxidase extracted from Horseradish and the variation of the response of the sensor with pH was investigated. Current profiles showed two highest sensitivities at two pH values respectively. In addition, two bands were observed in the electrophoretic expansion. A coincidence of the two experimental results added support to the possibility that the biosensor has two different isozymes. Assuming that current profiles are the sum of two gaussians, we deconvoluted them and determined the optimum pH of peroxidase isozymes.

생체내의 혈중이온농도 예측을 위한 마이크로 pH-ISFET프로브의 개발 (Development of a Micro pH-ISFET Probe for in vivo Measurements of the Ion Concentration in Blood)

  • 손병기;이종현;이광만
    • 대한전자공학회논문지
    • /
    • 제23권1호
    • /
    • pp.83-90
    • /
    • 1986
  • A micro pH-ISFET probe, which can be applied to the in vivo measurements of the hydrogen ion concentration in blood, has been developed, and a measuring system equiped with this probe also developed. The pH-ISFET has been fatricated by employing the techniques of integrated circuit fabrication. Two kinds of micro electrode formed around the sensing gate during the wafer process, and the other is a capillary type of Ag/AfCl/sat. KCI reduced in size. This capillary electrode has shown its good performance characteristics so far in the application with ISFET as well as a commercial one. In order to form a micro pH-ISFET probe, this pH-ISFET and well as a commercial one. In order to form a micro pH-ISFET probe, this pH-ISFET and the capillary electrode were built together into a needle tip having 1 mm inner diameter. The chip size of a twin pH-ISFET is 0.8 mmx1.4 mm, the material of the sensing gate membrane is Si3N4, and the sensitivity of the developed probe is about 52mV/pH.

  • PDF