• Title/Summary/Keyword: pH dependent

Search Result 1,766, Processing Time 0.023 seconds

$Na^{+}$-dependent NADH:quinone Oxidoreductase in the Respiratory Chain of the Marine Bacterium Marinomonas vaga

  • Kim, Young-Jae;Park, Yong-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.391-396
    • /
    • 1996
  • The Gram-negative marine bacterium Marinomonas vaga, which requires 0.5 M NaCl concentration for optimal growth, is slightly halophilic. The growth of M vaga was highly resistant to the proton conductor, carbonyl cyanide m-chlorophenylhydrazone (CCCP) under alkaline pH conditions (pH 8.5) but very sensitive to CCCP under acidic pH conditions (pH 6.5). These results suggest that the respiratory chain-linked NADH oxidase system of M. vaga may lead to generation of a $Na^{+}$ electrochemical gradient. In order to examine the existence of $Na^{+}$-stimulated NADH oxidase in M. vaga, membrane fractions were prepared by the osmotic lysis method. The membrane-bound NADH oxidase oxidized both NADH and deamino-NADH as substrates and required $Na^{+}$ for maximum activity. The maximum activity of NADH oxidase was obtained at about pH 8.5 in the presence of 0.2 M NaCl. The site of $Na^{+}$-dependent activation in the NADH oxidase system was at the NADH:quinone oxidoreductase segment. The NADH oxidase and NADH:quinone oxidoreductase were very sensitive to the respiratory chain inhibitor, 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) in the presence of 0.2 M NaCl but highly resistant to another respiratory inhibitor, rotenone. Based on these findings, we conclude that M. vaga possesses the $Na^{+}$-dependent NADH:quinone oxidoreductase that may function as an electrogenic $Na^{+}$ pump.

  • PDF

Effect of pH-dependent Solubility on Release Behavior of Alginate-Chitosan Blend Containing Activated Carbon

  • Oh, Ae-Ri;Jin, Dong-Hwee;Yun, Ju-Mi;Lee, Young-Seak;Kim, Hyung-Il
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.208-212
    • /
    • 2009
  • Alginate-chitosan blend containing coconut-based activated carbon was prepared as a drug delivery carrier in order to improve the loading and releasing capacity of the drug. The activated carbon was incorporated as effective adsorbent for drug due to the extremely high surface area and pore volume, high adsorption capacity, micro porous structure and specific surface activity. Alginate-chitosan blend containing coconut-based activated carbon showed the sustained release for a longer period. Alginate-chitosan blend showed higher release of drug as the pH increased and higher release of drug as the content of chitosan decreased due to the pH-dependent solubility of blend components.

An Experimental Study on the Sorption of U(VI) onto Granite

  • Min-Hoon Baik;Pil-Soo Hahn
    • Nuclear Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.445-454
    • /
    • 2002
  • The sorption of U(Vl) on a domestic granite is studied as a function of experimental conditions such as contact time, solution-solid ratio, ionic strength, and pH using a batch procedure. The distribution coefficients, $K_{d}$'s, of U(VI) are about 1-100mL/g depending on the experimental conditions. The sorption of U(VI) onto granite particles is greatly dependent upon the contact time, solution-solid ratio, and pH, but very little is dependent on the ionic strength. It is noticed that an U(VI)-carbonate ternary surface complex can be formed in the neutral range of pH. In the alkaline range of pH above 7, U(VI) sorption onto granite particles is greatly decreased due to the formation of anionic U(VI)-carbonate aqueous complexes.s.

The Effects of S-solution and A-solution on Oral Health in Preschool Children (S-solution과 A-solution을 이용한 구강함수가 미취학 아동의 구강건강에 미치는 효과)

  • Son, Hee Jung;Hong, Hae Sook
    • Journal of Korean Biological Nursing Science
    • /
    • v.17 no.2
    • /
    • pp.150-158
    • /
    • 2015
  • Purpose: This study aimed to evaluate the effects of gargling with S-solution and gargling with A-solution on salivary pH, coated tongue, and dental plaque index in preschool children. Methods: Non-equivalent control group pretest-posttest design was used to select the participants. 99 preschool children were divided into three groups. Dependent variables were recorded at baseline, 30 minutes, and 7 days after the first treatment was given. The data were analyzed using $X^2$-test, ANOVA, and repeated measures of ANOVA. Results: There were no significant differences in dependent variables in pre-test. However, the salivary pH in the S-solution group had significantly increased after 30 minutes (p<.05) and then again 7 days (p<.01) after the first treatment. Also, the S-solution and A-solution groups had greater decrease in dental plaque index after 30 minutes and again 7 days after the first treatment (p<.001) than the control group. With respect to coated tongue, there were no significant differences among the three groups. Conclusion: The results of this study indicate that essential oil gargling after brushing is helpful in improving oral health due to auxiliary oral hygiene effects with natural products. Specifically, gargling with S-solution is more effective than A-solution on oral health in preschool children by neutralizing salivary pH and reducing dental plaque index.

Kinetics for Mononuclear Heterocyclic Rearrangement of N-(5-phenyl-1,2,4-oxadiazol-3-yl)-N'-arylformamidine (I) (N-(5-phenyl-1,2,4-Oxadiazol-3-yl)-N'-arylformamidine의 Mononuclear Heterocyclic Rearrangement반응에 대한 반응속도론 (제1보))

  • Jung Ui Hwang;Jong Jae Chung;Young Zoo Youn
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.301-310
    • /
    • 1988
  • Reaction rates for mononuclear heterocyclic rearrangement of N-(5-phenyl-1,2,4-oxadiazol-3-yl)-N'-arylformamidines into 3-acylamino-1-aryl-1,2,4-triazoles were determined spectrophotometrically in dioxane/water (50 : 50, v/v). There are two different reaction paths according to pH. One is pH-independent path, the other is pH-dependent one. In pH-independent path, the result of substituent effect by IYT equation show that N-H bond breaking as well as new N-N bond formation controls the reaction rate. In pH-dependent path, concave-upward Hammett plot was observed. It can be concluded that new N-N bond formation is more advanced than N-H bond breaking in transition state for electron-donating substituents, but N-H bond breaking is more advanced than new N-N bond formation for electron-withdrawing substituents.

  • PDF

Production of Mn-Dependent Peroxidase from Bjerkandera fumosa and Its Enzyme Characterization

  • Jarosz-Wilkolazka, Anna;Luterek, Jolanta;Malarczyk, Elzbieta;Leonowicz, Andrzej;Cho, Hee-Yeon;Shin, Soo-Jeong;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.85-95
    • /
    • 2007
  • Manganese dependent peroxidase (MnP) is the most ubiquitous enzyme produced by white-rot fungi, MnP is known to be involved in lignin degradation, biobleaching and oxidation of hazardous organopollutants. Bjerkandera fumosa is a nitrogen-unregulated white-rot fungus, which produces high amounts of MnP in the excess of N-nutrients due to increased biomass yield. The objective of this study was to optimize the MnP production in N-sufficient cultures by varying different physiological factors such as Mn concentration, culture pH, and incubation temperature. The growth of fungus was optimal in pH 4.5 at $30^{\circ}C$, $N_2$-unregulated white-rot fungus produces high amounts of MnP in the excess N-nutrients. The fungus produced the highest level of MnP (up to $1000U/{\ell}$) with $0.25g/{\ell}$ asparagine and $1g/{\ell}$ $NH_4Cl$ as N source at 1.5 mM $MnCl_2$ concentration, pH value of 4.5 at $30^{\circ}C$. Purification of MnP revealed the existence of two isoforms: MnPl and MnP2. The molecular masses of the purified MnPl and MnP2 were in the same range of 42~45 kDa. These isoforms of B. fumosa strictly require Mn to oxidize phenolic substrates. Concerned to kinetic constants of B. fumosa MnPs, B. fumosa has similar Km value and Vmax compared to the other white-rot fungi.

Skin Irriation Effect of Glycolic Acid and UVB in Guinea Pig (Guinea pid를 이용한 Glycolic acid 및 UVB의 피부 자극성 평가)

  • 조대현;홍진태
    • Toxicological Research
    • /
    • v.16 no.1
    • /
    • pp.89-94
    • /
    • 2000
  • Alpha-hydroxy acid(AHA) are used in cosmetic products as a pH adjuster, mild exfoliant and humectant-skin conditioner. Cosmetics containing higher concentration (30%) and lower pH (3.0) of AHA can cause side effects if it is applied without the prescription. For providing information on the safety of AHA and on human risk assessments we studied skin irritation effect of glycolic acid, one of the most commonly used AHA in guinea pigs. The skin irritation by glycolic acid was increased in a dose(10% to 70%), acidity (pH 2.5 to 5.5.) and length of exposure dependent manner (for up to 14 days), respectively. The combination treatment with UVB (0.4 or 3.0 J/$cm^2$) increased glycolic acid-induced skin irritation. Histological examination showed that hyperplasia of non-inflammatory cells in the epidermis of skin treated with high dose of glycolic acid (pH 3.0). There results show that glycolic acid increased skin irritation in a dose, length of exposure and pH dependent manner, respectively, in guinea pig, and the combination with UVB increased glycolic acid-induced skin irritation. The cell proliferation of non-inflammatory cell may be involved in high doses of glycolic acid-induced skin irritation. Long-term application of more than 30% of glycolic acid (pH 3.0) may cause skin irritation.

  • PDF

A Cyclin-Dependent Kinase Inhibitor, p16^{INK4A}, Induces Apoptosis in The Human Cancer Cells. (Cyclin-dependent Kinase저해 단백질 p16^{INK4A}의 인체 암세포에서의 세포사멸 유도 활성)

  • 김민경;이철훈
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.1
    • /
    • pp.72-77
    • /
    • 2004
  • Previously, we synthesized a novel Cyclin-dependent kinase inhibitor, MCS-5A. Also, we investigated the involvement of cell cycle regulatory events during MCS-5A-mediated apoptosis in HL-60(+p16/-p53) cells with up-regulation of p16 protein expression. In contrast, apoptosis was not observed in A549(-p16/+p53) cells. Therefore we propose that $p16^{INK4A}$ is a key enzyme for inducing apoptosis. In the present studies, we have explored the mechanism of $p16^{INK4A}$ -mediated cytotoxicity and the role of p16.sup INK4A/ overexpression in the induction of apoptosis in human tumor cells. The tumor suppressor gene $p16^{INK4A}$ is known as a cyclin-dependent kinase inhibitor (CKI) and cell cycle regulator. We expressed wild type $p16^{INK4A}$ in pcDNA3.1 vector and then transfected into non-small cell lung cancer (NSCLC) cell expressing different statue of p16$^{INK4A}$, p53 gene〔A549(-p16/+p53), H1299(-p16/-p53) and HeLa(+pl6/+p53) cell line〕. TUNEL assay (including propidium iodide staining following transfection of these cell line with pcDNA3.1-pl6) indicate that p16$^{INK4A}$-mediated cytotoxicity was associated with apoptosis. This is supported by studies demonstrating an induction of caspase 3 cleavage due to the transfection of A549, H1299 and HeLa cells with pcDNA3.1-pl6. These results suggest that p16$^{INK4A}$ has a new function of inducing apoptosis which is not related with the function of tumor suppressor gene p53.