• Title/Summary/Keyword: pH dependent

Search Result 1,766, Processing Time 0.038 seconds

Inhibition of Cellular Proliferation by p53 dependent Apoptosis and G2M Cell Cycle Arrest of Saussurea lappa CLARKE in AGS Gastric Cancer Cell Lines

  • Jeong Han Su;Kim Dong Jo;Heo Geum Jeong;Nam Chang Gyu;Go Seong Gyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1186-1191
    • /
    • 2004
  • The root of Saussurea lappa includes sesquiterpene lactones such as costunolide and dehydrocostus lactone, and has been shown to be anti-tumorigenic with being used in traditional medicinal therapy in the Eastern Asia. However, the molecular basis of the effects of Saussurea lappa on fate of gastric carcinoma, which incur very frequently in the area, has not been well identified. In this study, the cytostatic effects of Saussurea lappa were examined using gastric AGS cancer cells. Cell viability was dramatically reduced by Saussurea lappa, in a dose-dependent manner. As time passed after its treatment, apoptotic population was increased and clearly showed G2-arrest. Being consistent, its treatment resulted in maintaining of G1 and S-phase cyclins D1, E, and A even until a significant apoptotic population was observed, for example, at 24h after treatment. However, G2/M phase cyclin B1 was reduced even at 12 h after treatment. In addition, its treatment increased expression of p53, p21/sup Wafl / cyclin dependent kinase inhibitor (CKI), and Bax, resulted in cleavages of procaspase 3 and poly ADP-ribose polymerase(PARP), indicating that such G2 arrest- and apoptosis-related molecules are involved. Therefore, these suggest that extracts of Saussurea lappa root may be a safer and effective reagent to deal with gastric cancers either by traditional herbal therapy or combinational therapy with conventional chemotherapy.

A Study on the Oxidation Characteristics of p-Cresol on Pt Anode (백금전극(白金電極)에 의한 파라크레졸의 양극전해(陽極電解) 산화특성(酸化特性))

  • Kim, Hong-Soo;Nam, Jeong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.47-53
    • /
    • 1990
  • The electrochemical oxidation behavior of p-cresol on platinum anode had been investigated by cyclic voltammetric method for the variation of concentration, scan rate of potential, temperature and pH of electrolyte. The oxidation potential of p-cresol was dependent on the electrolyte until the pH=11.5, but in basic solution over its, it was held at o.40V(vs. SCE). A diffusion was rate determining step of oxidation as irreversible reaction by the transfer atone electron. The current of peak was proportional to concentration of p-cresol until the 0.1N and optimum concentration was found to be about 0.1N. The activation energy was calculated for 5.8kcal/mol from the plot of log $I_l$ vs. 1/T.

Characteristics of Cyanide Decomposition by Hydrogen Peroxide Reduction (과산화수소에 의한 시안의 분해특성)

  • 이진영;윤호성;김철주;김성돈;김준수
    • Resources Recycling
    • /
    • v.11 no.2
    • /
    • pp.3-13
    • /
    • 2002
  • The characteristics of cyanide decomposition in aqueous phase by hydrogen peroxide have been explored in an effort to develop a process to recycle waste water. The self-decomposition of $H_2O$$_2$at pH 10 or below was minimal even in 90 min., with keeping about 90% of $H_2O$$_2$undissociated. On the contrary, at pH 12 only 9% of it remained during the same time. In the presence of copper catalyst at 5 g Cu/L, complete decomposition of $H_2$O$_2$was accomplished at pH 12 even in a shorter time of 40 min. The volatility of free cyanide was decisively dependent on the solution pH: the majority of free cyanide was volatilized at pH 8 or below, however, only 10% of it was volatilized at pH 10 or above. In non-catalytic cyanide decomposition, the free cyanide removal was incomplete in 300 min. even in an excessive addition of $H_2$$O_2$at a $H_2$$O_2$/CN molar ratio of 4, with leaving behind about 8% of free cyanide. On the other hand, in the presence of copper catalyst at a Cu/CN molar ratio of 0.2, the free cyanide was mostly decomposed in only 16 min. at a reducedH202/CN molar ratio of 2. Ihe efnciency of HBO2 in cyanide decomposition decreased with increasing addition of H2O2 since the seu-decomposition rate of $H_2$$O_2$increased. At the optimum $H_2$$O_2$/mo1ar ratio 0.2 of and Cu/CN molar ratio of 0.05, the free cyanide could be completely decomposed in 70 min., having a self-decomposition rate of 22 mM/min and a H$_2$$O_2$ efficiency of 57%.

Optimization of Alkali Extraction for Preparing Oat Protein Concentrates from Oat Groat by Response Surface Methodology (반응표면분석법을 이용한 쌀귀리 단백질의 알칼리 추출 공정 최적화)

  • Jeong, Yong-Seon;Kim, Jeong-Won;Lee, Eui-Seok;Gil, Na-Young;Kim, San-Seong;Hong, Soon-Taek
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.9
    • /
    • pp.1462-1466
    • /
    • 2014
  • In this study, an attempt was made to produce oat protein concentrates from defatted oat groat by alkali extraction. Independent variables formulated by D-optimal design were NaOH concentration (X1, 0.005~0.06 N) for extraction and precipitation pH (X2, pH 4.0~6.0), and the dependent variable was extraction yield (Y1, %). Experimental results were analyzed by response surface methodology to determine optimized extraction conditions. Extraction yield increased both with an increase in NaOH concentration of the extraction solution and when approaching a precipitation pH of 4.9, and NaOH concentrations were a major influencing parameter. Solubility of oat protein concentrates showed a minimum value (i.e., 0.1%) at pH 5 and increased substantially at pH values in the range of ${\leq}$ pH 3 or ${\geq}$ pH 7, reaching a maximum value at pH 11 (i.e., 76%). Regression equation coincided well with the results of the experiment. Optimized extraction conditions to maximize extraction yield were 0.06 N NaOH (X1) for extraction and pH 4.7 (X2) for precipitation.

Repetition of Apoptosis Induced by Amiloride Derivatives in Human Umbilical Vein Endothelial Cells (제대정맥 내피세포에서 Amiloride 유도체에 의한 Apoptosis 반복)

  • Park, Kyu Chang;Park, Kyu Sang;Moon, Soo Jee
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.1
    • /
    • pp.56-66
    • /
    • 2003
  • Purpose : Human umbilical vein endothelial cells(HUVECs) play an important role in regulating blood flow by releasing vasoactive substances. It has been reported that endothelial impairment and dysfunction might be a primary cause of placental vascular disease, which is manifested clinically as preeclampsia in mother and intrauterine growth restriction in fetus. Furthermore, the frequency of apoptotic changes is increased in umbilical and placental tissues from growth-restricted pregnancies. However, the various mechanisms of umbilical endothelial cell apoptosis have not been broadly proposed. We investigate the effects of amiloride derivatives on apoptotic death of HUVECs and identify their ionic mechanism. Methods : HUVECs were purchased from Clonetics, and cultured on endothelial cell growth medium. MTT assay and flow cytometry were used for assessing cytotoxic effect and confirming the apoptosis. Changes in intracellular ion concentrations were measured with specific fluorescent dyes and fluorescence imaging analysis system. Results : Amiloride derivatives elicited cytotoxic effects on HUVECs with dose-dependent manners and the rank order of potency is HMA($IC_{50}\;11.2{\mu}M$), MIA>EIPA>>amiloride. HMA-induced cytotoxicity is dependent on extra- and intracellular pH, that is, increase extra- and intracellular pH augmented the cytotoxic effects of HMA. HMA dose-dependently reduced intracellular major ions, such as $K^+$ and $Cl^-$. Interestingly, the depletion of intracellular ions induced by HMA was also significantly enhanced at alkaline extracellular pH. Conclusion : Amiloride derivatives induce apoptosis of HUVECs with dose and pH dependent manners. They reduce intracellular $K^+$ and $Cl^-$ concentration, which is also extracellular pH dependent.

cDNA cloning of a membrane-associated. magnesium-dependent 30kDa neutral sphingomyelinase

  • Jeon, Hyung-Jun;Jung, Sung-Yun;Kim, Dae-Kyong
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.328.1-328.1
    • /
    • 2002
  • A major lipid-signaling pathway in mammalian cells implicated the activation of sphingomyelinase (SMase), which hydrolyses sphingomyeline to generate ceramide and phosphocholine. Sphingomyelinase is divided into many isoform groups dependent on optimal pH, and essential cation especially magnesium in their activation. Such as acidic sphingomyelinase, neutral sphingomyelinase and alkaline sphingomyelinase. Ceramide is known as a crucial second messenger in cell responses like cell proliferation. cell cycle arrest. cellular senescence, and apoptosis. (omitted)

  • PDF

A Study of Phosphate Adsorption on Kaolinite by $^{31}$P NMP Spectroscopy ($^{31}$P NMR을 이용한 카올리나이트에 흡착된 인산염의 연구)

  • 김영규
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.186-195
    • /
    • 2000
  • To study phosphate adsorption on kaolinite, $^{31}$ P MAS NMR(magic angle spinning nuclear magnetic resonance spectroscopy)has been used for kaolinite reacted in 0.1 M phosphate solutions at pH’s from 3 to 11. There are at least 3 different forms of phosphate on kaolinite. One is the phosphate physically adsorbed on kaolinite surface (outer-sphere complexes) or species left after vacuum-filtering. The second is the phosphate adsorbed by ligand exchange (inner-sphere complexes), and the third is Al-phosphate precipitates which are pH dependent. Most of the inner-spherer complexes and surface precipitates are mainly on hydroxided Al(aluminol) rather than hydroxided Si(silanol). These are pertinent with the results obtained from the phosphate adsorption experiments on silica gel and ${\gamma}$-Al$_2$O$_3$ as model compounds, respectively. The two peaks with more negative chemical shifts(more shielded) than the ortho-phosphate peak (positive chemical shift) are assigned to be the inner-sphere complexes and surface precipitates. The $^{31}$ P chemical shifts of the Al-phosphate precipitates are more negative than those of inner-sphere complexes at a given pH due to the larger number of P-O-Al linkages per tetrahedron. The chemical shifts of both the inner-sphere complexes and surface precipitates are more negative than those of inner-sphere complexes at a given pH due to the larger number of P-O-Al linkages per tetrahedron. The chemical shifts of both the inner-sphere complexes and surface precipitates become progressively less shielded with increasing pH. For the inner-sphere complexes, decreasing phosphate protonation combined with peak averaging by rapid proton exchange among phosphate tetrahedra with different numbers of protons is though to be the reason for the peak change. The decreasing shielding with increasing pH for surface precipitates is probably due to the decreasing average number of P-O-Al linkages per tetrahedron combined with decreasing protonation like inner-sphere complexes.

  • PDF

Inhibition and Chemical Mechanism of Protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707 (Pseudomonas pseudoalcaligenes KF707에서 유래한 protocatechuate 3,4-dioxygenase 의 저해 및 화학적 메커니즘)

  • Kang, Taekyeong;Kim, Sang Ho;Jung, Mi Ja;Cho, Yong Kweon
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.487-495
    • /
    • 2015
  • We carried out pH stability, chemical inhibition, chemical modification, and pH-dependent kinetic parameter assessments to further characterize protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707. Protocatechuate 3,4-dioxygenase was stable in the pH range of 4.5~10.5. L-ascorbate and glutathione were competitive inhibitors with $K_{is}$ values of 0.17 mM and 0.86 mM, respectively. DL-dithiothreitol was a noncompetitive inhibitor with a $K_{is}$ value of 1.57 mM and a $K_{ii}$ value of 8.08 mM. Potassium cyanide, p-hydroxybenzoate, and sodium azide showed a noncompetitive inhibition pattern with $K_{is}$ values of 55.7 mM, 0.22 mM, and 15.64 mM, and $K_{ii}$ values of 94.1 mM, 8.08 mM, and 662.64 mM, respectively. $FeCl_{2}$ was the best competitive inhibitor with a $K_{is}$ value of $29{\mu}M$. $FeCl_{3}$, $MnCl_{2}$, $CoCl_{2}$, and $AlCl_{3}$ were also competitive inhibitors with $K_{is}$ values of 1.21 mM, 0.85 mM, 3.98 mM, and 0.21 mM, respectively. Other metal ions showed noncompetitive inhibition patterns. The pH-dependent kinetic parameter data showed that there may be at least two catalytic groups with pK values of 6.2 and 9.4 and two binding groups with pK values of 5.5 and 9.0. Lysine, cysteine, tyrosine, carboxyl, and histidine were modified by their own specific chemical modifiers, indicating that they are involved in substrate binding and catalysis.

The MEK-1 Inhibitor, PD98059 reduces dioxin-induced CYP1A1 expression

  • Yim, Su-JIn;Suh, Jung-Ho;Park, Hyun-Sung
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2002.07a
    • /
    • pp.238-238
    • /
    • 2002
  • We studied whether kinase pathways are involved in TCDD-induced gene expression by treating specific kinase inhibitors ncluding MEK1 inhibitor PD98059, p38 inhibitor SB202190, PI-3 kinase inhibitor Wortmannin or LY294002 or protein tyrosine kinase inhibitor Genestein and then tested the effects of individual inhibitors on TCDD-induced gene expression of cytochromelAl gene (CYPlAl). Our results show that PD98059, MEK-1 inhibitor reduces dioxin-inducible transcription of CYPlAl. p44/p42MAPK, that is phosphorylated by Mek-1, are phosphorlylated by treatment of TCDD, peaking at lnM, 30min treatments. Overexpressions of p44/p42 MAPK dominant negative mutants suppress dioxin dependent transcription of DRE-driven reporter gene in a dose-dependent manner. Our results demonstrate that p44/p42 MAPK is essential for transcriptional activity of AHR/ARNT heterodimer. We found that PD98059 dose-dependently blocks TCDD-induced DRE binding of the AHR/ARNT heterodimer, thereby it reduces TCDD-induced gene expression. Therefore, our results indicate that Mek-1/p44/p42 MAPK pathway is involved in TCDD-induced gene expression, [This study was supported by a grant from Korean Research Foundation Grant (X01529)to H. Park]

  • PDF

Effect of 2-Bromoethanesulfonic Acid on In vitro Fermentation Characteristics and Methanogen Population

  • Lee, S.Y.;Yang, S.H.;Lee, W.S.;Kim, H.S.;Shin, D.E.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.1
    • /
    • pp.42-48
    • /
    • 2009
  • An in vitro incubation study was conducted to investigate effects of 2-bromoethanesulfonic acid (BES) on ruminal fermentation characteristics and methanogen population. BES at the final concentration of 0, 1 and 5 mM with two different substrates having a different ratio of timothy and concentrate (100% timothy vs. 40% timothy-60% concentrate) was incubated for 0, 24, 48 and 72 h in a $39^{\circ}C$ incubator. Total DNA extracted from culture fluid was used as a template for real-time PCR to measure the population of methanogens. Four different primer sets were used for amplification of total bacteria, total methanogens, the order Methanobacteriales and the order Methanomicrobiales. BES reduced (p<0.01) total gas and methane production in a dose-dependent manner. BES at 5 mM inhibited methane production by more than 95% compared to the control. An interaction between substrate and level of BES in total gas and methane was detected (p<0.01). The decrease of methane production with increasing BES level was more pronounced on mixed substrate than on timothy alone. However, hydrogen production was increased by BES treatment (p<0.01). Total VFA concentration was not affected, but molar percentage of propionate and butyrate was increased and acetate to propionate ratio was reduced by BES treatment (p<0.01). BES did not affect the population density of total bacteria but reduced (p<0.01) the population of total methanogens, the order Methanobacteriales and the order Methanomicrobiales in a dose-dependent manner. The type of substrate did not influence the trend, although the magnitude of response was different between all-roughage and 40% roughage substrate.