Browse > Article
http://dx.doi.org/10.5713/ajas.2009.80581

Effect of 2-Bromoethanesulfonic Acid on In vitro Fermentation Characteristics and Methanogen Population  

Lee, S.Y. (Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences Seoul National University)
Yang, S.H. (Dairy Science Division, National Institute of Animal Science)
Lee, W.S. (Dairy Science Division, National Institute of Animal Science)
Kim, H.S. (Dairy Science Division, National Institute of Animal Science)
Shin, D.E. (Nong Hyup Feed Inc.)
Ha, Jong K. (Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences Seoul National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.22, no.1, 2009 , pp. 42-48 More about this Journal
Abstract
An in vitro incubation study was conducted to investigate effects of 2-bromoethanesulfonic acid (BES) on ruminal fermentation characteristics and methanogen population. BES at the final concentration of 0, 1 and 5 mM with two different substrates having a different ratio of timothy and concentrate (100% timothy vs. 40% timothy-60% concentrate) was incubated for 0, 24, 48 and 72 h in a $39^{\circ}C$ incubator. Total DNA extracted from culture fluid was used as a template for real-time PCR to measure the population of methanogens. Four different primer sets were used for amplification of total bacteria, total methanogens, the order Methanobacteriales and the order Methanomicrobiales. BES reduced (p<0.01) total gas and methane production in a dose-dependent manner. BES at 5 mM inhibited methane production by more than 95% compared to the control. An interaction between substrate and level of BES in total gas and methane was detected (p<0.01). The decrease of methane production with increasing BES level was more pronounced on mixed substrate than on timothy alone. However, hydrogen production was increased by BES treatment (p<0.01). Total VFA concentration was not affected, but molar percentage of propionate and butyrate was increased and acetate to propionate ratio was reduced by BES treatment (p<0.01). BES did not affect the population density of total bacteria but reduced (p<0.01) the population of total methanogens, the order Methanobacteriales and the order Methanomicrobiales in a dose-dependent manner. The type of substrate did not influence the trend, although the magnitude of response was different between all-roughage and 40% roughage substrate.
Keywords
Methane; 2-Bromoethanesulfonic Acid; Fermentation; Methanogen;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Bhatta, R., O. Enishi and M. Kurihara. 2007. Measurement of methane production from ruminants. Asian-Aust. J. Anim Sci. 20(8):1305-1318
2 Bonhomme, A. 1990. Rumen ciliates: their metabolism and relationships with bacteria and their hosts. Anim. Feed Sci. Technol. 30:203-266   DOI   ScienceOn
3 Denman, S. E., N. W. Tomkins and C. S. McSweeney. 2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol. 62(3):313-322   DOI   PUBMED
4 Dohme, F., A. Machmuller, A. Wasserfallen and M. Kreuzer. 2001. Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets. Lett Appl Microbiol. 32(1):47-51   DOI   ScienceOn
5 Lee, H. J., S. C. Lee, J. D. Kim, Y. G. Oh, B. K. Kim, C. W. Kim and K. J. Kim. 2003. Methane production potential of feed ingredients as measured by in vitro gas test. Asian-Aust. J. Anim Sci. 16(8):1143-1150
6 Martin, S. A. and J. M. Macy. 1985. Effects of monensin, pyromellitic diimide and 2-bromoethanesulfonic acid on rumen fermentation in vitro. J. Anim. Sci. 60:544-550   DOI   PUBMED   ScienceOn
7 Mitsumori, M. and W. Sun. 2008. Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Asian-Aust. J. Anim Sci. 21(1):144-154
8 Moe, P. W. and H. F. Tyrrell. 1979. Methane production in dairy cows. J. Dairy Sci. 62:1583-1586   DOI
9 Moss, A. R. 1993. Methane: global warming and production by animals. Chalcombe Publications, Kingston, UK
10 Nicholson, M. J., P. N. Evans and K. N. Joblin. 2007. Analysis of methanogen diversity in the rumen using temporal temperature gradient gel electrophoresis: identification of uncultured methanogens. Microb. Ecol. 54:141-150   DOI   ScienceOn
11 SAS. 2002. SAS user's guide: Statistics (Version 9.01 Ed.). SAS Inst. Inc., Cary, N.C. USA
12 Van Nevel, C. J. and D. I. Demeyer. 1995. Feed additives and other interventions for decreasing methane emissions. In:Biotechnology in animal feeds and animal feeding (Ed. R. J. Wallace and A. Chesson) pp. 329-349. VCH, Weinheim, Germany
13 Van Kessel, J. S. and J. B. Russell. 1996. The effect of pH on ruminal methanogenesis. FEMS Microbiol. Ecol. 20:205-210   DOI   ScienceOn
14 Van Nevel, C. J. and D. I. Demeyer. 1988. Manipulation of rumen fermentation. In: The rumen microbial ecosystem (Ed. P. N. Hobson) pp. 387-443. Elsevier Science Publishers, New York, USA
15 Wolin, M. J. 1960. A theoretical rumen fermentation balance. J. Dairy Sci. 43:1452-1459   DOI
16 McAllister, T. A., E. K., Okine, G. W. Mathison and K. -J. Cheng. 1996. Dietary, environmental and microbiological aspects of methane production in ruminants. Can. J. Anim. Sci. 76:231-243   DOI   ScienceOn
17 Trei, J. E., R. C. Parish and Y. K. Singh. 1971. Effect of methane inhibitors on rumen metabolism and feedlot performance of sheep. J. Dairy Sci. 54(4):536-540   DOI   ScienceOn
18 Behlke, E. J. 2007. Attenuation of ruminal methanogenesis. dissertations in animal science. University of Nebraska-Lincoln, USA
19 Hungate, R. E., W. Smith, T. Bauchop, I. Yu and J. C. Rabinowitz. 1970. Formate as an intermediate in the bovine rumenfermentation. J. Bacteriol. 102:389-397   PUBMED
20 Balch, W. E. and R. S. Wolfe. 1979. Transport of coenzyme M (2-mercaptoethanesulfonic acid) in Methanobacterium ruminantium. J. Bacteriol. 137:264-273   PUBMED
21 Immig, I., D. Demeyer, D. Fiedler, C. Van Nevel and L. Mbanzamihigo. 1996. Attempts to induce reductive acetogenesis into a sheep rumen. Arch. Tierernahr. 49(4):363-370   DOI   ScienceOn
22 Skillman, L. C., P. N. Evans, C. Strompl and K. N. Joblin. 2006. 16S rDNA directed PCR primers and detection of methanogens in the bovine rumen. Lett. Appl. Microbiol. 42:222-228   DOI   ScienceOn
23 Choi, N. J., S. Y. Lee, H. G. Sung, S. C. Lee and Jong K. Ha. 2004. Effects of halogenated compounds, organic acids and unsaturated fatty acids on in vitro methane production and fermentation characteristics. Asian-Aust. J. Anim. Sci. 17(9):1255-1259
24 Nollet, L., D. Demeyer and W. Verstraete. 1997. Effect of 2-bromoethanesulfonic acid and Peptostreptococcus productus ATCC 35244 addition on stimulation of reductive acetogenesis in the ruminal ecosystem by selective inhibition of methanogenesis. Appl. Environ. Microbiol. 63:194-200   PUBMED
25 Wright, A. D., C. H. Auckland and D. H. Lynn. 2007. Molecular diversity of methanogens in feedlot cattle from Ontario and Prince Edward Island, Canada. Appl. Environ. Microbiol. 73:4206-4210   DOI   ScienceOn
26 Ungerfeld, E. M., S. R. Rust, D. R. Boone and Y. Liu. 2004. Effects of several inhibitors on pure cultures of ruminal methanogens. J. Appl. Microbiol. 97(3):520-526   DOI   ScienceOn
27 Zicarelli, F., Serena Calabro, Vincenzo Piccolo, Simona D'Urso, Raffaella Tudisco, Fulvia Bovera, Monica I. Cutrignelli and Federico Infascelli. 2008. Diets with different forage/concentrate ratios for the mediterranean Italian buffalo: In vivoand In vitro digestibility. Asian-Aust. J. Anim. Sci. 21(1):75-82
28 Martin, S. A. 1998. Manipulation of ruminal fermentation with organic acids: a review. J. Anim. Sci. 76(12):3123-3132   PUBMED
29 Erwin, E. S., G. J. Marco and E. M. Emery. 1961. Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. J. Dairy Sci. 41:1768-1770
30 Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Develop. 28:7-15
31 Snedecor, G. W. and W. G. Cochran. 1967. Statistical methods (6th Ed.). Iowa State Univ. Press, Ames
32 Sauer, F. D. and R. M. Teather. 1987. Changes in oxidation reduction potentials and volatile fatty acid production by rumen bacteria when methane synthesis is inhibited. J. Dairy Sci. 70(9):1835-1840   DOI   ScienceOn
33 Crutzen, P. J., I. Aselmann and W. Seiler. 1986. Methane production by domestic animals, wild ruminants, other herbivorous fauna and humans. Tellus. 388:271-284
34 Czerkawski, J. W., K. L. Blaxter and F. W. Wainman. 1966. The metabolism of oleic, linoleic, and linolenic acids by sheep with reference to their effects on methane production. Br. J. Nutr. 20 :349-362   DOI   ScienceOn
35 Sparling, R. and L. Daniels. 1987. The specificity of growth inhibition of methanogenic bacteria by bromoethanesulfonate. Can. J. Microbiol. 33:1132-1136   DOI
36 Agarwal, N., D. N. Kamra, P. N. Chatterjee, R. Kumar and L. C. Chaudhary. 2008. In vitro methanogenesis, microbial profile and fermentation of green forages with buffalo rumen liquor as influenced by 2-bromoethanesulphonic acid. Asian-Aust. J. Anim. Sci. 21(6):818-823
37 Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feedstuffs. Anim. Feed Sci. Technol. 48:185-197   DOI   ScienceOn
38 Busquet, M., S. Calsamiglia, A. Ferret and C. Kamel. 2005. Screening for effects of plant extracts and active compounds of plants on dairy cattle rumen microbial fermentation in a continuous culture system. Anim. Feed Sci. Technol. 123-124: 597-613   DOI   ScienceOn
39 Joblin, K. N. 2005. Methanogenic archaea. In: Methods in gut microbial ecology for ruminants (Ed. H. P. S. Makkar and C. S. McSweeney). pp. 47-53. Springer, Dordrecht, The Netherlands
40 McSweeney, C. S., S. E. Denman, A.-D. G. Wright and Z. Yu. 2007. Application of recent DNA/RNA-based techniques in rumen ecology. Asian-Aust. J. Anim. Sci. 20(2):283-294
41 Tajima, K., T. Nagamine, H. Matsui, M. Nakamura and R. I. Aminov. 2001. Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens. FEMS Microbiol. Lett. 200:67-72   DOI   ScienceOn
42 Yu, Y., C. Lee, J. Kim and S. Hwang. 2005. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng. 89:670-679   DOI   ScienceOn
43 Lee, C. H., H. G. Sung, M. Eslami, S. Y. Lee, J. Y. Song, S. S. Lee and J. K. Ha. 2007. Effects of Tween 80 pretreatment on dry matter disappearance of rice straw and cellulolytic bacterial adhesion. Asian-Aust. J. Anim Sci. 20(9):1397-1401
44 Demeyer, D. I. and C. J. Van Nevel. 1975. Methanogenesis: an integrated part of carbohydrate fermentation, and its control. pp. 366-382. In: Digestion and metabolism in the ruminant (Ed. I. W. McDonald and I. J. C. Warner). The University of New England Publishing Unit, Armidale, Australia
45 Krumholz, L. R., C. W. Forsberg and D. M. Veira. 1983. Association of methanogenic bacteria with rumen protozoa. Can. J. Microbiol. 29:676-680   DOI   ScienceOn
46 Dong, Y., H. D. Bae, T. A. McAllister, G. W. Mathison and K.-J. Cheng. 1999. Effects of exogenous fibrolytic enzymes, alphabromoethanesulfonate and monensin on fermentation in a rumen simulation (RUSITEC) system. Can. J. Anim Sci. 79:491-498   DOI   ScienceOn
47 Lin, C., L. Raskin and D. A. Stahl. 1997. Microbial community structure in gastrointestinal tracts of domestic animals: comparative analyses using rRNA targeted oligonucleotide probes. FEMS Micriobiology Ecology 22:281-294   DOI   ScienceOn
48 Denman, S. E. and C. S. McSweeney. 2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 58:572-582   DOI   ScienceOn