• Title/Summary/Keyword: pH controlled

Search Result 1,065, Processing Time 0.027 seconds

Influence of Controlled- and Uncontrolled-pH Operations on Recombinant Phenylalanine Ammonia Lyase Production in Escherichia coli

  • Cui, Jian Dong;Zhao, Gui Xia;Zhang, Ya Nan;Jia, Shi Ru
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.954-958
    • /
    • 2009
  • Effects of controlled- and uncontrolled-pH operations on phenylalanine ammonia lyase (PAL) production by a recombinant Escherichia coli strain were investigated at uncontrolled-pH ($pH_{UC}$) and controlled-pH ($pH_C$) of 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, and 8.5 in bioreactor systems. The results showed that the recombinant PAL activity was improved significantly by controlled pH strategy. Among the $pH_C$ operations, the highest PAL activities were obtained under $pH_C$ 7.5 strategy where cell mass ($OD_{600\;nm}$) and PAL activity was 1.3 and 1.8 fold higher than those of $pH_{UC}$, respectively. The maximum PAL activity reached 123 U/g. The $pH_C$ 7.5 strategy made recombinant plasmid more stable and therefore allowed easier expression of PAL recombinant plasmid, which increased PAL production. It was indicated that the new approach (controlled-pH strategy) obtained in this work possessed a high potential for the industrial production of PAL, especially in the biosynthesis of L-phenylalanine.

Effect of pH on Phase Separated Anaerobic Digestion

  • Jung, Jin-Young;Lee, Sang-Min;Shin, Pyong-Kyun;Chung, Yun-Chul
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.456-459
    • /
    • 2000
  • A pilot scale experiment was performed for a year to develop a two-phase anaerobic process for piggery wastewater treatment (COD: 6,000mg/L, BOD: 4,000mg/L, SS: 500mg/L, pH 8.4, alkalinity 6,000mg/L). The acidogenic reactor had a total volume of 3㎥, and the methanogenic reactor, an anaerobic up-flow sludge filter, combining a filter and a sludge bed, was also of total volume 3㎥(1.5㎥ of upper packing material). Temperatures of the acidogenic and methanogenic reactors kept at 20$^{\circ}C$ and 35$^{\circ}C$, respectively. When the pH of the acidogenic reactor was controlled at 6.0-7.0 with HCl, the COD removal efficiency increased from 50 to 80% over a period of six months, and as a result, the COD of the final effluent fell in the range of 1,000-1,500 mg/L. BOD removal efficiency over the same period was above 90%, and 300 to 400 mg/L was maintained in the final effluent. The average SS in the final effluent was 270 mg/L. The methane production was 0.32㎥ CH$_4$/kg COD(sub)removed and methane content of the methanogenic reactor was high value at 80-90%. When the pH of the acidogenic reactor was not controlled over the final two months, the pH reached 8.2 and acid conversion decreased compared with that of pH controlled, while COD removal was similar to the pH controlled operation. Without pH control, the methane content in the gas from methanogenic reactor improved to 90%, compared to 80% with pH control.

  • PDF

pH-Controlled Synthesis of Cephalexin by a Purified Acetobacter turbidans Ampicillin Acylase

  • Nam, Doo-Hyun;Ryu, Yeon-Woo;Dewey D.Y Ryu
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.329-332
    • /
    • 2001
  • It has been known that, in enzymatic synthesis of cephalexin, the conversion yield was reduced by high loading of ampicillin acylase. In order to elucidate this phenomena, pH-controlled synthesis of cephalexin was examined using a purified Acetobacter turbidans acylase. When the pH of the reaction mixture was maintained at $6.20{\pm}0.04$, the reduction of the maximal conversion rate was not observed even with high enzyme loading. The kinetic parameters also suggest that pH drop during the enzymatic synthesis of cephalexin was mainly attributed to the rapid hydrolysis of D-${\alpha}$-phenylglycine methyl ester to D-${\alpha}$-phenylglycine, rather than the disappearance of 7-amino-3-deacetoxycephalosporanic acid for cephalexin synthesis. At higher molar ratio of two substrates, [D-${\alpha}$-phenylglycine methyl ester]/[7-amino-3-deacetoxycephalosporanic acid], the conversion rate was also elevated under pH-controlled enzymatic synthesis, which implies that the main reason for the pH drop is due to the production of D-${\alpha}$-phenylglycine methyl easter, the effect of a water-methanol cosolvent system on the ester, the effect of a water-methanol cosolvent system on the conversion profile was also examined. Even the though the conversion rate was increased in 10% methanol solution, a higher than 16% methanol in the reaction mixture caused an inactivation of enzyme.

  • PDF

Effect of medium pH on the extracellular production of red pigments using Monascus purpureus (Monascus purpureus 에 의한 세포외 적색색소 생산성 증가에 대한 배지내 pH 조절의 영향)

  • Park, No-Hwan;O, Yeong-Suk;Jeong, Uk-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.321-324
    • /
    • 2000
  • The Effect of pH red pigment production by Monascus purpureus ATCC 16365 has been studied in pH-controlled batch fermenter culture. A maximum of yellow and red pigments were detected using UV-Vis spectrophotometer at 385nm and 495nm, respectively. Fungal growth and pigment production were favoured at low pH(pH 4.0-5.5). Especially extracellular formation rate of orange to yellow pigment was decreased compared with that of orange to red pigment at pH 7.0. In addition, the enhancement of ratio of extracellular to intracellular pigment and the red pigment production in pH 7.0-controlled batch fermenter was observed. However, the pH 7.0-controlled batch cultures depressed the total production of pigments. The pH change from 4.0 to 7.0 during batch fermenter cultivations sharply increased both red pigment production and the extracellular composition.

  • PDF

Phospholipid Production by Pseudomonas sp.CH-414 under Various Culture Conditions (배양 조건에 따른 Pseudomonas sp.CH-414의 Phospholipid 생산능의 변화)

  • 박신형;신원철홍억기
    • KSBB Journal
    • /
    • v.10 no.2
    • /
    • pp.191-195
    • /
    • 1995
  • Using Pseudomonas sp. CH-414, the optimum culture conditions were investigated for the cell growth and the phospholipid production in batch culture by varying pH and aeration rate. With starting the cultivation under the conditions of pH 7.0 and 1vvm, pH was controlled to 6 or 8 at 30 hours of culture time. In the case of changing into pH 6.0, the phospholipid production was increased by ca. 20% with comparison to the case of pH 7.0. However, the biomass and the phospholipld concentration were rapidly decreased after 30 hours of culture time when pH was controlled to 8.0. As the aeration rate was increased, the biomass was increased while the phospholipid concentration was considerably varied and unstable. Especially, the concentration of phospholipid was rapidly decreased with 3vvm of aeration rate. Finally, under the culture conditions of pH 7.0 and 3vvm until 30 hours for the cell growth, which were controlled to pH 6.0 and 1vvm for the stable production of phospholipid beyond that time, the dry cell weight was $18.5g/\ell$ and the phospholipid concentration was $\0.83g/ell$ (45mg/g cell).

  • PDF

Alginate/Carboxymethyl Scleroglucan Hydrogels for Controlled Release of Protein Drugs

  • Lee, Chang-Moon;Jeong, Hwan-Jeong;Kim, Dong-Woon;Lee, Ki-Young
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.429-433
    • /
    • 2008
  • Alginate/carboxymethyl scleroglucan (CMSG) hydrogels were suggested as a novel carrier for the controlled release of protein drugs. The drug release characteristics of alginate hydrogels were improved by CMSG addition. Scleroglucan (Sclg) was carboxymethylated using monochloroacetic acid in aqueous alkaline medium. Alginate/CMSG hydrogels were prepared by dropping the mixture solution of alginate/CMSG into calcium chloride solution. The swelling behaviors and drug release characteristics of the hydrogels were investigated in the buffers of pH 1.2 or 7.4. As the CMSG content increased in the hydrogels, the swelling ratio of the alginate/CMSG hydrogel increased rapidly in the buffer of pH 7.4. At pH 1.2, however, the swelling ratio significantly decreased compared to that at pH 7.4. According to in vitro release tests, only 15% of ovalbumin, investigated as a model protein drug, was released from the alginate/CMSG hydrogels at pH 1.2 within 6 h. At pH 7.4, however, the drug release significantly increased due to the rapid swelling of the hydrogels. The release and swelling behaviors of the hydrogels could be controlled by changing the CMSG content in the hydrogels. These results supported the use of alginate/CMSG hydrogels as a suitable carrier for the controlled release of protein drugs in a pH responsive manner.

pH-Controlled Synthesis of Carbon Xerogels for Coin-Type Organic Supercapacitor Electrodes (pH를 조절하여 제조한 카본제어로젤을 이용한 코인타입 유기계 슈퍼커패시터 전극)

  • Ji Chul Jung;Wonjong Jung
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.430-438
    • /
    • 2023
  • In this study, we synthesized pH-controlled resorcinol-formaldehyde (RF) gels through the polymerization of two starting materials: resorcinol and formaldehyde. The prepared RF gels were dried using an acetone substitution method, and they were subsequently carbonized under nitrogen atmosphere to obtain carbon xerogels (CX_Y) prepared at different pH (Y). The carbon xerogels were utilized as active materials for coin-type organic supercapacitor electrodes to investigate the influence of pH on the electrochemical properties of the carbon xerogels. The carbon xerogels prepared at lower pH (CX_9.5 and CX_10) exhibited sufficient particle growth, with a three-dimensional network of particles during the RF gel formation, resulting in the development of abundant mesopores. Conversely, the carbon xerogels prepared at higher pH (CX_11 and CX_12) retained densely packed structures of small particles, leading to pore collapse and low specific surface areas. Consequently, CX_9.5 and CX_10 showed high specific surface areas, and provided ample adsorption sites for the formation of electric double layers with electrolyte ions. Moreover, the three-dimensional particle network in CX_9.5 and CX_10 significantly enhanced electrical conductivity. The presence of well-developed mesopores in these materials further facilitated the effective transport of electrolyte ions, contributing to their superior performance as organic supercapacitor electrodes. This study confirmed that pH-controlled carbon xerogels are one of the promising active materials for organic supercapacitor electrodes. Furthermore, we concluded that pH during RF gel formation is a crucial factor determining the electrode performance of the carbon xerogels, highlighting the need for precise pH control to obtain high-performance carbon xerogel electrodes.

Controlled Release of Isonicontinic Acid Hydrazide from the Membrane-Coated Tablet

  • Kim, Ki-Man;Kim, Shin-Keun
    • Archives of Pharmacal Research
    • /
    • v.8 no.1
    • /
    • pp.7-14
    • /
    • 1985
  • Membrane-coated tablet of isonicotinic acid hydrazide (INAH) which releases INAH at the zero-order kinetics was deveoped. It consisted of a soluble tablet core surrounded by a porous membrane which controls the diffusion rate. Tablet cores were prepared by compressing granules of INAH and polyvinyl chloride (PVC) dissolved in methyl ethyl ketone in which micronized sucrose were suspended. Diffusion rate of INAH from the tablet through the membrane was constant until the loaded INAH in the core was almost released. The rate was independent of pH of the dissolution medium. Water-soluble sucrose particles behaved as a poreproducing material in the water-insoluble PVC film coat. The pH independency of the rate was probably due to the high solubility of INAH in the water of wide pH range. The diffusion rate of INAH could be controlled by chnaging the composition of the membrane or the coat weight. This membrane-coated INAH tablet seemed to be a powerful candidate for the controlled release drug delivery system (DDS) of INAH or other highly watersoluble drugs.

  • PDF

Hydrogen Gas Production by Fermentation from Various Sugars Using Clostridium butyricum NCIB 9576 (Clostridium butyricum NCIB 9576에 의한 당으로부터 혐기적 수소생산)

  • Kim, Mi-Sun;Moon, Kwang-Woong;Lee, In-Gu;Lee, Tae-Jin;Sung, Chang-Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.1
    • /
    • pp.62-69
    • /
    • 1999
  • Clostridium butyricum NCIB 9576 evolved hydrogen gas and produced various organic acids from glucose, lactose, starch, and glycerol. Total amount of hydrogen gas produced from 1 and 2% glucose were 630 and 950ml $H_2$/l-broth, respectively, for the first 24 hrs of incubation and the maximum hydrogen production rates were 42 and 94ml $H_2$/hr/1-broth, respectively. Teh initial pH 6.8 decreased to 4.2~4.5 during the first 12~16 hrs of fermentation when the pH was not controlled, resulting in ceasing the cell growth and hydrogen evolution and in degradation of 82 and 40% glucose after 24hrs of incubation from 1 and 2% glucose, respectively. When pH was controlled to 5.5, glucose was consumed completely and resulted in increasing hydrogen production approximately 38~50% compared to the experiments without the pH control. C. butyricum NCIB 9576 produced hydrogen gas approximately 644, 1,700 and 3,080 ml $H_2$/l-broth with 0.5, 1 and 2% lactose, respectively and the maximum hydrogen production rates were 41, 141 and 179ml $H_2$/hr/l-broth, respectively. All of the lactose added was degraded completely during fermentation even though pH was not controlled. C. butyricum NCIB 9576 produced 183 and 709ml $H_2$/l-broth with 0.1 and 0.5% starch for 48 hrs, respectively, when pH was not controlled. The maximum rates of hydrogen gas production were 43 and 186ml $H_2$/l-broth, respectively and 80~100% of starch added was fermented. Approximately 107ml $H_2$/l-broth was produced using 1% glycerol by C. butyricum NCIB 9576 and the pH was maintained higher than 6.1 during fermentation without pH control. The degradation of glucose, lactose, starch and glycerol by C. butyricum NCIB 9576 were affected by the pH of fermentation broth and the organic acids released during fermentation. The pH of feremtntation broth dropped to 4.2~4.6 after 12~14 hrs incubation when glucose was used as a substrate while pHs were maintained above pH 5 under the same experimental conditions when lactose, starch and glycerol were used. The organic solvents and acids produced during glucose fermentation were mainly ethanol, butyrate, acetate and a little of propionate, while butyrate was the main organic acids during the lactose, starch, and glycerol fermentation by C. butyricum NCIB 9576.

  • PDF

Development of a Fully-Controlled Plant Growth System(II) - An Integrated Control System - (완전제어형 실험용 작물생육장치의 개발(II) - 복합 환경제어 시스템 -)

  • Shim, K.D.;Ryu, K.H.;Noh, S.H.;Hong, S.H.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.4
    • /
    • pp.344-353
    • /
    • 1992
  • This study was carried out to develop a fully-controlled plant growth system for studying the effects of environmental factors on plant growth. The plant growth system consists of the growth chamber, the measurement system for sensing and signal conditioning the environmental factors and the control system which includes control algorithm required for optimum operation and on-line monitoring. The results of the study on the performance of the controlled plant growth system are summarized as follows : 1. Under the light intensity of 18,000~20,000 lux, the temperature was controlled in the range of $22{\pm}0.4^{\circ}C$, the relative humidity of $70{\pm}5%$ respectively. 2. The $CO_2$ concentration was controlled in the range of $1,000{\pm}40ppm$(from 1st to 4th day) and $1,500{\pm}40ppm$(from 4th to 9th day). 3. The electric conductivity(EC) and pH of the nutrient solution were controlled in the range of $1.9{\pm}0.2mS/cm$ and $6.8{\pm}0.5pH$ respectively. 4. Under the above environmental conditions, the average fresh weight of leaf lettuce increased from 10g to 74g in 9 days with 24 hour lighting.

  • PDF