• Title/Summary/Keyword: pH change

Search Result 3,187, Processing Time 0.026 seconds

Effect of pH on the Preparation of Manganese Zinc Ferrite Powder by Alcoholic Dehydration of Citrate/formate Solution (알콜 탈수법에 의한 Mn-Zn Ferrite 분체 제조시 pH의 영향)

  • 김창범;신효순;이대희;김창현;이병교
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.10
    • /
    • pp.1123-1130
    • /
    • 1995
  • In the preparation of manganese zinc ferrite powders by alcoholic dehydration of citrate/formate solution. The effect of pH change on precipitation was investigated. The pH range for obtaining stable precipitates was studied. The glassy phase was obtained when the pH value of solution is higher than 5, and the formation mechanism of glassy phase was suggested. Below pH 5, the stable precipitates were formed, and the optimal pH was 2. Formation of glassy phase was accounted for the change of surface charge by pH change. The change of surface charge is caused by the interparticular agglomeration. The precipitate was redissolved into the water on the surface of precipitate itself and through the polymerization, it agglomerated. This mechanism is tought to be similar to that of viscous flow.

  • PDF

Pork Quality Traits According to Postmortem pH and Temperature in Berkshire

  • Kim, Tae Wan;Kim, Chul Wook;Yang, Mi Ra;No, Gun Ryoung;Kim, Sam Woong;Kim, Il-Suk
    • Food Science of Animal Resources
    • /
    • v.36 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • This study was performed to investigate the role of pH and temperature postmortem, and to demonstrate the importance of these factors in determining meat quality. Postmortem pH45min (pH at 45 min postmortem or initial pH) via analysis of Pearson’s correlation showed high positive correlation with pH change pHc24 (pH change from pH45min to pH24h postmortem). However, postmortem pH after 24 h (pH24h or ultimate pH) had a high negative correlation with pH change, pHc24, CIE L*, and protein content. Initial temperature postmortem (T1h ) was positively associated with a change in temperature from 45 min to 24 h postmortem (Tc24) and cooking loss, but negatively correlated with water holding capacity. Temperature at 24 h postmortem (T24h) was negatively associated with Tc24. Collectively, these results indicate that higher initial pH was associated with higher pHc24, T1h, and Tc24. However, higher initial pH was associated with a reduction in carcass weight, backfat thickness, CIE a* and b*, water holding capacity, collagen and fat content, drip loss, and cooking loss as well as decreased shear force. In contrast, CIE a* and b*, drip loss, cooking loss, and shear force in higher ultimate pH was showed by a similar pattern to higher initial pH, whereas pHc24, carcass weight, backfat thickness, water holding capacity, fat content, moisture content, protein content, T1h, T24h, and Tc24 were exhibited by completely differential patterns (p<0.05). Therefore, we suggest that initial pH, ultimate pH, and temperatures postmortem are important factors in determining the meat quality of pork.

An Experimental Study of Lactic Acidosis and Potassium Transfer in the Dog (락트산 산증과 칼륨이동에 관한 실험적 연구)

  • Park, Choo-Chul;Lee, Yung-Kyoon
    • Journal of Chest Surgery
    • /
    • v.12 no.4
    • /
    • pp.395-402
    • /
    • 1979
  • Intracellular pH was determined by distribution of 5.5-dimethyl-2,4-oxazolidlnedione [DMO]in the skeletal muscle of dogs before and after lactic acidosis induced by intravenous infusion of lactic acid solution. After infusion of lactic acid solution arterial pH decreased from 7.40 to around 7.12 [P<0.001]and metabolic acidosis was induced. However, dose-pH change response was not proportional as in the case of hydrochloric acid infusion. During lactic acidosis, intracellular pH changed very little except when venous blood $pCO_2$ increased significantly. The decrease of intracellular pH in lactic acidosis might be due primarily to the increase of intracellular $pCO_2$. And during lactic acidosis, change of extracellular pH was larger than that of intracellular pH, and this was also the case of change In hydrogen Ion concentration in extracellular and intracellular fluid. The fact was estimated that exogenous lactic acid transported into the cell does not contribute to pH change by the participation in the metabolism. Change in plasma potassium Ion concentration was not eminent as metabolic acid-base disturbances by other origin, and changing pattern of Hi/He ratio was not same as Ki/Ke ratio. In spite of no changes in extracellular potassium ion concentration after exogenous lactic acidosis total amount of potassium ion in extracellular fluid increased from 12.62mEg to 18.26mEg [P< 0.05].

  • PDF

An in Vivo Study of High Voltage Pulsed Current on pH in the Healing Wound Bed

  • Song, Byung-H.
    • Journal of Korean Physical Therapy Science
    • /
    • v.6 no.4
    • /
    • pp.173-178
    • /
    • 1999
  • The purpose of this study was to determine the effect of High Voltage Pulsed Current on pH in the healing wound bed. Seven adults, four males and three females, were studied with a total of fifty-five viable treatment sessions. Using a Cardy Digital pH meter, we measured the pH in the wound bed following saline rinse both prior to treatment and after a forty-five minute treatment. Analysis of all viable records(n=54) did not show a significant change in pH(p=0.82). The mean pH change in NoN-Smokers(-0.14) was more acidic when compared to the mean pH change in smokers(0.27) which was more alkaline.

  • PDF

Development of pH-Responsive Core-Shell Microcapsule Reactor

  • Akamatsu, Kazuki;Yamaguchi, Takeo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.191-194
    • /
    • 2004
  • A novel type of intelligent microcapsule reactor system was prepared. The reactor can recognize pH change in the medea and control reaction rate by itself. For the reactor system, acrylic acid (AA), N-isopropylacrylamide (NIPAM), and glucose oxidase (GOD) were selected as a pH-responsive device, a gating device according and a reaction device, respectively. Poly(NIPAM-co-AA) (P-NIPAM-co-AA) are known to change its hydrophilicity-hydrophobicity due to pH change. They were integrated in a core-shell microcapsule space. GOD was loaded inside the core space and the pores in the outside shell layer were filled with P-NIPAM-co-AA linear grafted chains as pH-responsive gates by plasma graft filling polymerization method. When P-NIPAM-co-AA gates are hydrophilic at high pH value, this microcapsule permits glucose penetration into the core space and GOD reaction proceeds. However, when P-NIPAM-co-AA gates are hydrophobic at low pH value, this microcapsule forbids glucose penetration and GOD reaction will not occur. The accuracy of this concept was examined.

  • PDF

Detection of Spurious Jindo Hongju

  • Choi, Kap-Seong;Song, Bo-Hyeon;Kim, Jung-Ho
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 1996.04a
    • /
    • pp.25-25
    • /
    • 1996
  • ;Jindo Hongju is an unique red-colored traditional distilled wine of Korea. The unique attractive color of Jindo Hongju is due to the pigments of gromwell (Lithospermum erythrorhizon) root, derivatives of naphtoquinone such as shikonin and acetylshikonin. Which are extracted during the distillation process. The attractive color of the gromwell pigments is easily changed to dark red or to brown causing deterioration of the Quality of Jindo Hongju. Due to the discoloration of the pigments and to the limited supply of gromwell roots, some brewers manufacture spurious Jindo Hongju using artificial colorants. This study was performed to devise a simple method of detecting spurious Jindo Hongju products. The color of the gromwell pigments was greatly affected by pH change and the change could be demonstrated by the change of the absorption spectrum. At pH 4.0 the normal pH of Jindo Hongju, the absorption spectra of gromwell pigments and genuine Hongju products showed an absorption maximum of 520 nm. The absorption maximum was shifted to 570 nm and to 616 nm as the pH was raised to 7.0 and 11.0 respectively. This transition due to the pH change was also demonstrated on em chromaticity diagram. The characteristic transition due to pH change of gromwell pigment solution was not observed with an artificial colorant (red No.2) which was suspected to be used in the manufacture of imitation products. The absorption spectra of most of the Jindo Hongju collected from the market were similar to that of the gromwell pigments and showed the characteristic transition due to pH change with the addition of NaOH. However, with a few of the products, the absorption spectra was similar to that of the artificial colorant and the characteristic transition due to pH change was not observed, indicating these products might have been forged. The result of study suggests that the transition of the absorption spectrum and the change of the color due to pH change be used for the detection of imitation products. Farther more, since, at pH above 9.0, the color of the gromwell pigments and genuine Jindo Hongju could be visually differentiated from that of the artificial colorant and forged products, it might be possible that the forged products be easily detected by raising the pH to above 9.0 and visually comparing the color with that of the gromwell pigment at the same pH.me pH.

  • PDF

Responsive fibers from Modification of Acrylic Fibers (아크릴 섬유의 개질에 의한 자극응답성 섬유)

  • 윤기종;우종형
    • Textile Coloration and Finishing
    • /
    • v.16 no.1
    • /
    • pp.53-58
    • /
    • 2004
  • The preparation of responsive fibers from acrylic fibers is studied. Various responsive fibers, such as fibers which change their color on exposure to light or with change in temperature, have been developed and are used commercially However, the responsive material in these fibers are not the fiber itself but chemicals in microcapsules attached to the fibers by finishing, and few fibers exhibit responsive properties by itself. The partial hydrolysis of polyacrylonitrile fibers to obtain pH responsive fibers is presented in this paper. Partial hydrolysis was effected by control of the concentration of the sodium hydroxide used in the hydrolysis, hydrolysis temperature and time. The degree of hydrolysis was evaluated by nitrogen content of the hydrolyzed fibers and their response, change in length, to aqueous solutions of varying pH was studied by continually changing the pH. Significant changes in lengths with pH were observed and the gel transition behavior varied with the conditions of hydrolysis. The hysteresis of the length change was also studied to evaluate the possibilities of using hydrolyzed acrylic fibers as pH sensors.

Enhancement of Geldanamycin Production by pH Shock in Batch Culture of Streptomyces hygroscopicus subsp. duamyceticus

  • Song, Jae-Yang;Kim, Yoon-Jung;Hong, Young-Soo;Chang, Yong-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.897-900
    • /
    • 2008
  • Various sequences of pH change were applied in a batch bioreactor to investigate pH shock effects on geldanamycin production by Streptomyces hygroscopicus subsp. duamyceticus JCM4427. In the control culture where the pH was not controlled, the maximum geldanamycin concentration was 414 mg/l. With the pHS1 mode of pH shock, that is, an abrupt pH change from pH 6.5 to pH 5.0 and then being maintained at around pH 5.0 afterward, 768 mg/l of geldanamycin was produced. With pHS2, in which the pH was changed sequentially from pH 6.7 to pH 5.0 and then back to pH 6.0, 429 mg/l of geldanamycin was produced. With pHS3 having a sequential pH change from pH 6.0 to pH 4.0 and then back to pH 6.5 followed by the third pH shock to pH 5.5, no geldanamycin production was observed. Considering that the productivity with pHS1 was about two-fold of that of the control culture with no pH control, we concluded that a more sophisticated manipulation of pH would further promote geldanamycin production.

Visualization of Ion Transport and pH Change in Ion Concentration Polarization (농도 분극 현상에서의 이온의 흐름과 pH 변화의 가시화)

  • Ko, Sung-Hee;Kang, Kwan-Hyoung
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.4
    • /
    • pp.38-42
    • /
    • 2010
  • Ion concentration polarization is an electrokinetic phenomenon which occurs in membrane systems, such as in an electrodialysis and fuel-cell system. But the phenomenon is not fully understood because hydrodynamics, electrokinetics and electrochemistry are coupled with each other. Here, we report that there occurs a change of pH value of buffer solution in concentration polarization phenomenon. To visualize the change of pH, the litmus solution which is one of the pH indicators was used. It is conjectured that the pH of solution changes because hydrogen ions were concentrated in cathodic side and hydroxide ions were concentrated in anodic side. We anticipate that this work may contribute to the fundamental understanding on the ion concentration polarization phenomenon.

Feasibility Study on the Development of Fiber-Optic pH Sensor for Endoscope (내시경용 광섬유 pH 측정 센서 개발을 위한 기초 연구)

  • Lee, Bong-Soo;Hong, Ju-Young;Hwang, Young-Muk;Cho, Seung-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.213-217
    • /
    • 2004
  • The general method to find a H. pylori in the stomach is the rapid urease test but it is only used to decide the infection with H. pylori. In this study, it is tried to develope fiber-optic pH sensor which can be used with gastroscop to quantify H. pylori. To measure the degree of infection with H. pylori, the color change of phenol red according to the degree of pH is measured by optical fibers with different light sources and the optimum distance from a sample to the end of sensor tip is decided by measuring the maximum reflectivity from a sample. Also the sensitivity study is carried out to decide the optimum light source which has sensitive change of reflectivity to the change of pH. It is expected that the fiber-optic pH sensor which measures the degree of infection with H. pylori exactly can be developed.