• 제목/요약/키워드: pH Sensor

검색결과 488건 처리시간 0.034초

An Array-Type RGB Sensor for Precision Measurement of pH

  • Kim, Ji-Sun;Oh, Han-Byeol;Kim, A-Hee;Kim, Jun-Sik;Lee, Eun-Suk;Goh, Bong-Jun;Choi, Ju-Hyeon;Shin, Ye-Ji;Baek, Jin-Young;Lee, Ki Sung;Jun, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • 제19권6호
    • /
    • pp.700-704
    • /
    • 2015
  • As pH is a widely used index in chemical, medical, and environmental applications, research on pH sensors has been active in recent years. This study obtained RGB values by measuring the reflected light from a liquid sample to detect fine changes in pH, and performed mathematical modeling to investigate the relationship between the detected optical signal and pH value. Also, the trends in pH changes were easily identified by analyzing RGB values and displaying them in the color coordinate for easy visualization of data. This method implemented a user-friendly system that can measure and analyze in real time. This system can be used in many fields such as genetic engineering, environmental engineering, and clinical engineering, because it not only can measure pH but also replaces a colorimeter or turbidimeter.

Titanium Acetylacetonate as an Excellent Ion-Carrier in Construction of Iodide Sensor

  • Ganjali, Mohammad Reza;Daftari, Azadeh;Mizani, Farhang;Salavati-Niasari, Masoud
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권1호
    • /
    • pp.23-26
    • /
    • 2003
  • Titanium acetylacetonate was used in the construction of a PVC-based membrane electrode. This sensor shows very good selectivity for iodide ion over a wide variety of common inorganic and organic anions. It exhibits Nernstian behavior with a slope of 59.1 mV per decade. The working concentration ranges of the sensor are with a detection limit of $3.0\;{\times}\;10^{-6}\;M$. The response time of the sensor is very fast (<8 s), and can be used for at least twelve weeks in the pH range of 4.0-9.2. The best performance was obtained with a membrane composition of 30% PVC, 65% dibutylphthalate, 3% titanium acetylacetonate and 2% hexadecyltrimethylammonium bromide. The proposed sensor was successfully applied as an indicator electrode for titration of iodide with silver ion.

정밀 시비를 위한 소구획 경작지내의 가변적 시비처리량 결정 (Determination of Variable Rate Fertilizing Amount in Small Size Fields for Precision Fertilizing)

  • 조성인;강인성;최상현
    • Journal of Biosystems Engineering
    • /
    • 제25권3호
    • /
    • pp.241-250
    • /
    • 2000
  • The feasibility of precision fertilizing for small size fields was studied by determining fertilizing amount of nitrogenous and calcareous to a cite specific region. A detailed soil survey at three experimental fields of $672m^2$, $300m^2$ and $140m^2$ revealed a considerable spatial variation of the pH and organic matter(OM) levels. Soil organic matter was measured using Walkley-Black method and soil pH was measured with a pH sensor. Soil sample was obtained by Grid Node Sampling Method. The soil sampling depth was 10∼20 cm from the soil surface. To display soil nutrient variation, a soil map was made using Geographic Information System (GIS) software. In soil mapping, soil data between nodes was interpolated using Inverse Distance Weighting (IDW) method. The variation was about 1∼1.8 in pH value and 1.4∼7% in OM content. Fertilizing Amount of nitrogenous and calcareous was determined by th fertilizing equation which was proposed by National Institute of Agricultural Science and Technology(NIAST). The variation of fertilizing amount was about 3∼11 kg/10a in nitrogenous and 70∼140 kg/10a in calcareous. The results showed a feasibility of precision fertilizing for small size fields.

  • PDF

Electrochemical Sensor for the Selective Determination of Prindopril Based on Phosphotungestic Acid Plastic Membrane

  • Zareh, Mohsen M.;Wasel, Anower M.;Alkreem, Yasser M. Abd
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권10호
    • /
    • pp.3088-3092
    • /
    • 2013
  • A novel PVC membrane sensor for perindopril based on perindopril-phosphotungstate ion pair complex was prepared. The influence of membrane composition (i.e. percent of PVC, plasticizer, ion-pair complex, and kind of plasticizer), inner solution, pH of test solution and foreign cations on the electrode performance was investigated. The optimized membrane demonstrates Nernstian response ($30.9{\pm}1.0$ mV per decade) for perindopril cations over a wide linear range from $9.0{\times}10^{-7}$ to $1{\times}10^{-2}$ M at $25^{\circ}C$. The potentiometric response is independent of the pH in the range of 4.0-9.5. The proposed sensor has the advantages of easy preparation, fast response time. The selectivity coefficients indicate excellent selectivity for perindopril over many common cations (e.g., $Na^+$, $K^+$, $Mg^{2+}$, $Cu^{2+}$, $Ni^{2+}$, rhamnose, maltose, glycine and benzamide. The practical applications of this electrode was demonstrated by measuring the concentrations of perindopril in pure solutions and pharmaceutical preparations with satisfactory results.

A New-Generation Fluorescent-Based Metal Sensor - iLOV Protein

  • Ravikumar, Yuvaraj;Nadarajan, Saravanan Prabhu;Lee, Chong-Soon;Rhee, Jin-Kyu;Yun, Hyungdon
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권4호
    • /
    • pp.503-510
    • /
    • 2015
  • The iLOV protein belongs to a family of blue-light photoreceptor proteins containing a light-oxygen-voltage sensing domain with a noncovalently bound flavin mononucleotide (FMN) as its chromophore. Owing to advantages such as its small size, oxygen-independent nature, and pH stability, iLOV is an ideal candidate over other reporter fluorescent proteins such as GFP and DsRed. Here, for the first time, we describe the feasibility of applying LOV domain-based fluorescent iLOV as a metal sensor by measuring the fluorescence quenching of a protein with respect to the concentration of metal ions. In the present study, we demonstrated the inherent copper sensing property of the iLOV protein and identified the possible amino acids responsible for metal binding. The fluorescence quenching upon exposure to Cu2+ was highly sensitive and exhibited reversibility upon the addition of the metal chelator EDTA. The copper binding constant was found to be 4.72 ± 0.84 µM. In addition, Cu2+-bound iLOV showed high fluorescence quenching at near physiological pH. Further computational analysis yielded a better insight into understanding the possible amino acids responsible for Cu2+ binding with the iLOV protein.

$SnO_2$계 가스 센서의 안정성 향상을 위한 산화물의 첨가 효과 (The effect of additive on $SnO_2$ gas sensor for improving stability)

  • 박광묵;민봉기;최순돈;남효덕
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.865-868
    • /
    • 2002
  • $SnO_2$ powders were prepare by precipitating $Sn(OH)_4$ from an aqueous solution of $SnCl_4{\cdot}5H_2O$, pH 9.5. The effects of stability and sensitivity of $SnO_2$ thick film sensors added with various amounts, $SiO_2$, $Al_2O_3$, $ZrO_2$, $TiO_2$ have been investigated. It is shown that the 3wt% $Al_2O_3$ or $SiO_2$ can improve the stability of $SnO_2$ gas sensor at an operating temperature of $350^{\circ}C$.

  • PDF

FET형 이온센서용 무선원격측정시스템 (Wireless Telemetry System for the FET-type Ion Sensors)

  • 정훈;;김영진;이영철;손병기
    • 센서학회지
    • /
    • 제10권3호
    • /
    • pp.187-195
    • /
    • 2001
  • ISFET를 이용하여 환경 감시, 산업 공정 제어 및 의용 기기 등 각종분야에 적합한 무선 원격 측정시스템을 구현하였다. 이 시스템은 원거리에 놓여진 측정 장비와 전체 장비를 제어할 수 있는 개인용 컴퓨터로 구성되어진다. 측정 장비에서 구해진 데이터는 RF 송신기로 개인용 컴퓨터에 전송되고 전송된 데이터는 개인용 컴퓨터에 의해 처리된다. 제안된 시스템은 3 채널의 ISFET 신호를 전송하기 위해 시분할 멀티플렉싱 방식을 이용한다. 측정 장비는 인식번호를 가지고 있기 때문에 PC로 많은 수의 측정 장비를 제어할 수 있다. 구현된 시스템의 동작특성은 양호했으며 pH-ISFET을 이용한 실험에서 0.1pH의 정확도를 가지는 것으로 확인되었다.

  • PDF

Comparative Study of Holmium (III) Selective Sensors Based on Thiacalixarene and Calixarene Derivatives as an Ionophore

  • Singh, Sanjay;Rani, Geeta
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2229-2237
    • /
    • 2012
  • The two chelates based on calix[4]arene and thiacalix[4]arene have been synthesized and used as neutral ionophores for preparing PVC based membrane sensor selective to $Ho^{3+}$ ion. The addition of potassium tetrakis(4-chlorophenyl)borate (KTpClPB) and various plasticizers, viz., NDPE, o-NPOE, DOP, TEP and DOS have been found to improve significantly the performance of the sensors. The best performance was obtained with the sensor no. 6 having membrane of $L_2$ with composition (w/w) ionophore (2%): KTpClPB (4%): PVC (37%): NDPE (57%). This sensor exhibits Nernatian response with slope $21.10{\pm}0.3mV/decade$ of activity in the concentration range $3.0{\times}10^{-8}-1.0{\times}10^{-2}M\;Ho^{3+}\;ion$, with a detection limit of $1.0{\times}10^{-8}M$. The proposed sensor performs satisfactorily over a wide pH range of 2.8-10, with a fast response time (5 s). The sensor was also found to work successfully in partially non-aqueous media up to 25% (v/v) content of methanol, ethanol and acetonitrile, and can be used for a period of 4 months without any significant drift in potential. The electrode was also used for the determination of $Ho^{3+}$ ions in synthetic mixtures of different ions and the determination of the arsenate ion in different water samples.