• Title/Summary/Keyword: pH Sensor

Search Result 488, Processing Time 0.03 seconds

Preparation of Pt-, Ni- and Cr-Decorated SnO2 Tubular Nanofibers and Their Gas Sensing Properties (Pt, Ni, Cr이 도포된 튜브형 SnO2 나노섬유의 합성과 가스 감응특성)

  • Kim, Bo-Young;Lee, Chul-Soon;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.211-215
    • /
    • 2014
  • The Pt-, Ni- and Cr-decorated tubular $SnO_2$ nanofibers for gas sensors were prepared by the electrospinning of polyvinylpyrrolidone (PVP) nanofibers containing Pt, Ni, and Cr precursors, the sputtering of $SnO_2$ on the electrospun PVP nanofibers, and the removal of sacrificial PVP parts by heat treatment at $600^{\circ}C$ for 2 h. Pt-decorated tubular $SnO_2$ nanofibers showed high response ($R_a/R_g=210.5$, $R_g$: resistance in gas, $R_a$: resistance in air) to 5 ppm $C_2H_5OH$ at $350^{\circ}C$ with negligible cross-responses to other interference gases (5 ppm trimethylamine, $NH_3$, HCHO, p-xylene, toluene and benzene). Cr-decorated tubular $SnO_2$nanofibers showed the selective detection of p-xylene at $400^{\circ}C$. In contrast, no significant selectivity to a specific gas was found in Ni-decorated tubular $SnO_2$ nanofibers. The selective and sensitive detection of gases using Pt-decorated and Cr-decorated tubular $SnO_2$ nanofibers were discussed in relation to the catalytic promotion of gas sensing reaction.

Characteristic Estimation of the Formation and Etching of PZT Thin Films for Pyroelectric IR Sensor Application (초전형 적외선 센서 제작을 위한 PZT박막 형성 및 식각 특성 평가)

  • Park, Y.K.;Ju, B.K.;Jeon, H.S.;Yoon, Y.S.;Oh, Y.J.;Lee, Y.H.;Suh, S.H.;Oh, M.H.;Kim, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3304-3306
    • /
    • 1999
  • In this study, we used the sputtering method with single target to obtain the thick and uniform PZT($PbZrTiO_3$) films for micromached IR sensor application. Then, we investigated the etching characteristics and conditions which is necessary process to fabricate the IR sensor. We tested the C-axis orientation and P-E loop of the deposited PZT films with the XRD and RT66A, respectively. Also we investigated the surface of the films by the AFM and SEM analysis.

  • PDF

Electrical Properties of semiconducting $VO_2$-based Critical Temperature Sensors (반도성 $VO_2$계 급변온도센서의 전기적 특성)

  • 유광수;김종만;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.10
    • /
    • pp.866-870
    • /
    • 1993
  • For VO2-based sensors applicable to temperature measurements and optical disk materials by the nature of semiconductor to metal transition, the crystallinity and temperature vs. resistance characteristics were investigated as a function of the heat treatment temperature. The bead-type sensors were prepared through typical sensor fabrication processing and heat-treated at 40$0^{\circ}C$, 50$0^{\circ}C$, and $600^{\circ}C$, respectively, for 30 minutes in H2 gas atmosphere. As results of the temperature vs. resistance measurements, the electrical resistance in the phase transition range was decreased by 102 order for the VO2 sensor and by 103 order for the V71P11Sra18 system. It was estimated that the hysteresis, temperature vs. resistance, and current vs. voltage characteristics of the V71P11Sr18 system could be utilized for commericialization as a temperature sensor.

  • PDF

Light addressable potentiometric penicillin sensor using Ta2O5 sensing membrane (Ta2O5 감지막의 광지시 전위차형 페니실린 센서)

  • Lee, Sun-Young;Jang, Su-Won;Kim, Jae-Ho;Kwon, Dae-Hyuk;Kim, Eung-Soo;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.192-198
    • /
    • 2006
  • In this study, the light addressable potentiometric sensors (LAPS) with $Si_{3}N_{4}/SiO_{2}/Si$, and $Ta_{2}O_{5}/SiO_{2}/Si$ structures were fabricated. The penicillinsae was immobilized on the devices to hydrolyze the penicillin using self-assembled monolayer (SAM) method. Then response characteristics according to the penicillin concentrations were measured and compared. The measuring system was simplified by using LabVIEW. The pH response characteristics of fabricated devices are 56 mV/pH ($Si_{3}N_{4}$ sensing membrane) and 61 mV/pH ($Ta_{2}O_{5}$ sensing membrane). The sensitivity of sensor by enzyme reaction result of the enzyme reaction were 60 mV/decade and 74 mV/decade for $Si_{3}N_{4}/SiO_{2}/Si$ and $Ta_{2}O_{5}/SiO_{2}/Si$ structure, respectively, in the range of $0.1\;mM{\sim}10\;mM $of the penicillin concentration.

Fabrication and Response Characteristics of the Light Addressable Potentiometric Sensor for Detecting the Penicillin Concentration (페니실린 농도 검출을 위한 광지시형 전위차 센서의 제작 및 감응특성)

  • Jang, Su-Won;Jung, Young-Hee;Park, Jin-Ho;Kim, Jea-Ho;Kwon, Dae-Hyuk;Lee, Seung-Ha;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.356-362
    • /
    • 2004
  • In this study, we developed the measuring system based on light addressable potentiometric sensor for the quantitative analysis of penicillin that is very important element in medicine and pharmacy, clinic. It is investigated the response characteristics by enzyme reaction with penicillinase. First, the surface pre-treatment process of the $Si_{3}N_{4}$ was established. The coupling agent was made using self assembled monolayer method and it was confirmed the immobilization process by AFM. Also, as the measuring system, potentiostat, signal processing part etc. was made by Lab VIEW software, it was reduced detecting time as well as simplifying the system. Fabricated device was shown excellent pH response characteristics, 57 mV/ pH in the range of pH $2{\sim}11$. The response characteristics was 60 mV/decade in the range of $0.1{\sim}10{\;}mM$.

Synthesis of a New Hexadendates Schiff's Base and Its Application in the Fabrication of a Highly Selective Mercury(II) Sensor

  • Ganjali, M.R.;Norouzi, P.;Alizadeh, T.;Salavati-Niasari, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.68-72
    • /
    • 2007
  • A new PVC membrane potentiometric sensor that is highly selective to Hg2+ ions was prepared, using bis(2-hydroxybenzophenone) butane-2,3-dihydrazone (HBBD) as an excellent hexadendates neutral carrier. The sensor works satisfactorily in the concentration range of 1.0 × 10-6 to 1.0 × 10-1 mol L-1 (detection limit 4 × 10-7 mol L-1) with a Nernstian slope of 29.7 mV per decade. This electrode showed a fast response time (~8 s) and was used for at least 12 weeks without any divergence. The sensor exhibits good Hg2+ selectivity for a broad range of common alkali, alkaline earth, transition and heavy metal ions (lithium, sodium, potassium, magnesium, calcium, copper, nickel, cobalt, zinc, cadmium, lead and lanthanum). The electrode response is pH independent in the range of 1.5-4.0. Furthermore, the developed sensor was successfully used as an indicator electrode in the potentiometric titration of mercury ions with potassium iodide and the direct determination of mercury in some binary and ternary mixtures.

Determination of Variable Rate Fertilizing Amount in Small Size Fields Using Geographic Information System

  • S. I. Cho;I. S. Kang;Park, S. H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.236-245
    • /
    • 2000
  • The feasibility of precision farming for small sized fields was studied by determining fertilizing amount of nitrogenous and calcareous to a cite specific region. A detailed soil survey at three experimental fields of 672㎡, 300㎡ and 140㎡ revealed a considerable spatial variation of the pH and organic matter(OM) levels. Soil organic matter was measured using Walkley-Black method and soil pH was measured with a pH sensor. Soil sample was obtained by Grid Node Sampling Method. The soil sampling depth was 10 - 20 cm from the soil surface. To display soil nutrient variation, a soil map was made using Geographic Information System (GIS) software. In soil mapping, soil data between nodes was interpolated using Inverse Distance Weighting (IDW) method. The variation was about 1 - 1.8 in pH value and 1.4 -7 % in OM content. Fertilizing Amount of nitrogenous and calcareous was determined by the fertilizing equation which was proposed by National Institute of Agricultural Science and Technology.(NIAST). The variation of fertilizing amount was about 3 - 11 kg/10a in nitrogenous and 70 - 140 kg/10a in calcareous. The results showed a feasibility of precision fertilizing for small size fields.

  • PDF

CMOS Binary Image Sensor with Gate/Body-Tied PMOSFET-Type Photodetector for Low-Power and Low-Noise Operation

  • Lee, Junwoo;Choi, Byoung-Soo;Seong, Donghyun;Lee, Jewon;Kim, Sang-Hwan;Lee, Jimin;Shin, Jang-Kyoo;Choi, Pyung
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.362-367
    • /
    • 2018
  • A complementary metal oxide semiconductor (CMOS) binary image sensor is proposed for low-power and low-noise operation. The proposed binary image sensor has the advantages of reduced power consumption and fixed pattern noise (FPN). A gate/body-tied (GBT) p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET)-type photodetector is used as the proposed CMOS binary image sensor. The GBT PMOSFET-type photodetector has a floating gate that amplifies the photocurrent generated by incident light. Therefore, the sensitivity of the GBT PMOSFET-type photodetector is higher than that of other photodetectors. The proposed CMOS binary image sensor consists of a pixel array with $394(H){\times}250(V)$ pixels, scanners, bias circuits, and column parallel readout circuits for binary image processing. The proposed CMOS binary image sensor was analyzed by simulation. Using the dynamic comparator, a power consumption reduction of approximately 99.7% was achieved, and this performance was verified by the simulation by comparing the results with those of a two-stage comparator. Also, it was confirmed using simulation that the FPN of the proposed CMOS binary image sensor was successfully reduced by use of the double sampling process.

Electrochemical Determination of Chemical Oxygen Demand Based on Boron-Doped Diamond Electrode

  • Dian S. Latifah;Subin Jeon;Ilwhan Oh
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.215-221
    • /
    • 2023
  • A rapid and environment-friendly electrochemical sensor to determine the chemical oxygen demand (COD) has been developed. The boron-doped diamond (BDD) thin-film electrode is employed as the anode, which fully oxidizes organic pollutants and provides a current response in proportion to the COD values of the sample solution. The BDD-based amperometric COD sensor is optimized in terms of the applied potential and the solution pH. At the optimized conditions, the COD sensor exhibits a linear range of 0 to 80 mg/L and the detection limit of 1.1 mg/L. Using a set of model organic compounds, the electrochemical COD sensor is compared with the conventional dichromate COD method. The result shows an excellent correlation between the two methods.

An Optochemical Sensor for the Determination of Divalent Transition Metal Ions Based on a Reactive Dye (반응성 염료를 이용한 2가 전이금속 측정용 광센서)

  • Kim, Sung Bae;Lee, Hyuk Jin;Kim, Jin Mog;Shin, Doo Soon;Cha, Geun Sig;Nam, Hakhyun
    • Analytical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.305-310
    • /
    • 1998
  • A reactive dye synthesized with an amine containing Eriochrome Black T derivative and cynauric chloride was immobilized on a cellulose membrane to construct an optical sensor for the detection of divalent transition metal ions in aqueous solution. The response of this reactive dye-based optical sensor was as sensitive as that of Eriochrome Black T in solution phase. Its typical detection limits for $Zn^{2+}$ and $Co^{2+}$ were $6.3{\times}10^{-5}mol/l$ and $2.5{\times}10^{-4}mol/l$, respectively. No loss in the sensitivity of reactive dye-based sensor was observed even the pH of flowing solutions continually varied for an extended period of time.

  • PDF