• Title/Summary/Keyword: pH Sensor

Search Result 488, Processing Time 0.026 seconds

Monitoring of itaconic acid production by a 2-dimensional fluorescence sensor

  • Jeong, Sang-Yun;Lee, Jong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.270-273
    • /
    • 2001
  • The fluorescence sensor is utilized to monitor the complex fluorescence patterns of intra- and extracellular components in cultivation processes. Especially biogenic fluorophores such as proteins and peptides (tryptophan, phenylalanine), coenzymes (FAD, NAD(P)H) and vitamins (riboflavin, pyridoxine) within cells are detected by a fluorescence sensor. In this work a 2-dimensional fluorescence sensor has been used to monitor a production process of itaconic acid by Aspergillus terreus and the on-line monitored spectra data can be con-elated to off-line data measured by a few methods.

  • PDF

Preparation of a New $K^{+}-ISFET$ Modified with 4'-Aminobenzo-15-crown-5 and Its Response Characteristics (4'-Aminobenzo-15-crown-5를 수식한 새로운 $K^{+}-ISFET$의 제조와 감응특성)

  • Lee, H.L.;Yun, J.H.;Yang, S.T.;Jung, D.S.;Sohn, B.K.
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.85-92
    • /
    • 1992
  • A new potassium sensitive field effect transistor modified with 4'-aminobenzo-15-crown-5 was prepared and its response characteristics were evaluated. The response slope of $K^{+}-ISFET$ for pH was 30.0 mV/decade and the response time was mere than 3 minutes. And the response slope and time of the $K^{+}-ISFET$ for potassium ion as $19.5{\pm}0.2{\;}mV/decade$ and about 3 minutes, respectively. The linear response range of the sensor for potassium ion was $2.0{\times}10^{-4}{\sim}1.0{\times}10^{-2}M$. The selectivity coefficients of the $K^{+}-ISFET$ for the alkali and alkaline earth metal ions were also evaluated. Sodium, ammonium and calcium ions exhibited relatively significant interference. The long term stability of the sensor was remarkably improved and it could be used for more than 50 days.

  • PDF

Effect of pH on Swelling Property of Hyaluronic Acid Hydrogels for Smart Drug Delivery Systems

  • Kim, Jin-Tae;Lee, Deuk-Yong;Kim, Young-Hun;Lee, In-Kyu;Song, Yo-Seung
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.256-262
    • /
    • 2012
  • Hyaluronic acid(HA) hydrogels were synthesized by immersing HA microbeads in phosphate buffered saline solutions having different pH levels to assess the effect of pH on the swelling ratio of HA hydrogels for smart drug delivery systems. No beads were formed when the HA solution(below pH 9) was crosslinked with divinyl sulfone(DVS) because DVS is a basic solution. The variation regarding the size of the microbead was not significant, suggesting that the bead size is not a function of pH(10 ~ 14). However, the pore size of the microbeads decreased with increasing pH from 10 to 14, leading to the surface smoothness and dense network as a result of higher crosslinking. The swelling ratio of hydrogels increased when the pH rose from 2(acidic) to 6(neutral). Afterwards, it decreased with further increasing pH(basic). The lower swelling ratio may be due to the lack of ionization of the carboxyl groups. On the other hand, a higher swelling ratio is likely due to the increased electrostatic repulsions between negatively charged carboxyl groups on different chains. Experimental results suggested that pH-responsive HA hydrogels can be applicable to the controlled drug delivery systems.

Preparation of the Citrobacter freundii Bio-Sensor for the Determination of Glucose and Its Applications (Glucose 정량을 위한 Citrobacter freundii Bio-Sensor의 개발과 그 응용)

  • Ihn Gwon-Shik;Hong Young-Seuk;Kim Ui-Rak;Jang Seh-Yong;Sohn Moo-Jeong
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.424-429
    • /
    • 1990
  • A bio-sensor for the determination of glucose has been constructed by immobilizing the Citrobacter freundii or its organelle on carbon dioxide gas-sensor. The bacterial sensor was better than organelle in response, but the latter showed a shorter response time. The bacterial sensor gave linearity between 7.0 ${\times}\;10^{-4}$ and 1.0 ${\times}\;10^{-2}$ M glucose with a slope of 42.2 mV/decade in pH 7.0, 0.2 M tris-HCl buffer at 30$^{\circ}C$. The selectivity of this sensor was very high for glucose. Employing for the determination of glucose in serum, the sensor showed a good agreement with a routine analyzer.

  • PDF

Production and Process Monitoring of 5-Aminolevulinic Acid (ALA) by Recombinant E. coli II. process Monitoring by a 2-Dimensional Fluorescence Sensor (유전자 재조합 대장균에 의만 5-Aminolevulinic Acid (ALA)의 생산 및 공정 모니터링 II. 2차원 형광센서에 의안 공정 모니터링)

  • 이종일;정상윤;임용식;정상욱
    • KSBB Journal
    • /
    • v.19 no.1
    • /
    • pp.27-32
    • /
    • 2004
  • 2-Dimensional fluorescence sensor has a wide range of excitation and emission wavelengths, that some biogenic fluorphors in a biological process can be monitored simultaneously. The production processes of 5-aminolevulinic aicd (ALA) by recombinant E. coli BL21 (DE3) pLysS harboring plasmid pFLS45 were on-line monitored by a 2-dimensional fluorescence sensor The characteristics of fluorescence spectrum was dependent upon physical and biological factors of a bioprocess such as culture pH, cell mass etc. Some off-line data were correlated to the fluorescence intensity well, which was monitored at some combination of excitation and emission wavelengths by the 2-dimensional fluorescence sensor.

The Fabrication of FET-Type Reference Electrode Using Ion-Blocking Membrane of Polymer Double Layer (고분자 이중층의 이온 방해막을 이용한 FET형 기준전극 제작)

  • Lee, Young-Chul;Kim, Young-Jin;Jeong, Hun;Kwon, Dae-Hyuk;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.106-112
    • /
    • 2000
  • A FET-type reference electrode(REFET) is an effective method to eliminate typical problems with ISFET(ion sensitive field-effect transistor) such as drift, temperature, light-dependence and miniaturization of reference electrode. However, it is difficult to make the highly reliable REFET with excellent long-term stability and reproducibility. In this paper, an ion-blocking membrane was applied to the REFET for the PET-type electrolyte sensors(pH, pNa-ISFET). The fabricated REFET indicated the stable sensitivity (55.4 mV/pH, 53.5 mV/decade) and good linearity in the pH and pNa measurement. In the measurement, ISFET/Pt/REFET configuration showed excellent stability and reproducibility.

  • PDF

The Biosensor for L-Glutamine Using Tissue Slices of Wistar Rat (Wistar 쥐 조직을 이용한 L-Glutamine 바이오센서)

  • Bae, Jin Hyeon;Choe, Seong Mun;Im, Dong Jun;Kim, Wi Rak
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.3
    • /
    • pp.200-207
    • /
    • 1994
  • A biosensor for the measurement of L-glutamine has been constructed by immobilizing the slice of Wistar rat kidney and it's organelle on $NH_3$ gas-sensing electrode. The effects of pH, buffer solution, temperature and thickness of slice were investigated in order to optimize electrode response. The tissue sensor had the linearity in the range of L-glutamine concentration $8.0{\times}10^{-5}{\sim}1.0{\times}10^{-2} M$ with a slope of 53.8 mV/decade in 0.05 M phosphate buffer solution, pH 7.8 at $30^{\circ}C$, and optimum thickness of slice and response time were 30 ${\mu}m$ and 3∼5 min, respectively. The organelle sensor showed the linearity within L-glutamine concentration range of $1.2{\times}10^{-4}{\sim}5.0{\times}10^{-3} M$ with a slope of 54.0 mV/decade in 0.05 M phosphate buffer solution, pH 7.8 at $30^{\circ}C$, and response time was 6∼7 min, respectively. Thus, it is clear that the tissue and organelle sensor will be useful for L-glutamine measurements.

  • PDF

pH Measurements with a Microcantilever Array-Based Biosensor System

  • Hur, Shin;Jung, Young-Do
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.186-191
    • /
    • 2012
  • In this paper, we present a pH measurement method that uses a microcantilever-array-based biosensor system. It is composed of microcantilever array, liquid cell, micro syringe pump, laser diode array, position sensitive detector, data acquisition device, and data processing software. Four microcantilevers are functionalized with pH-sensitive MHA(mercaptohexadecanoic acid) as a probe, while three microcantilevers are functionalized with HDT(hexadecane thiol) as reference. We prepare PBS(phosphate buffered saline) solutions of different pH and inject them into the liquid cell with a predefined volumetric speed at regular time intervals. The functionalized mircocantilevers in the liquid cell deflect as a self-assembled monolayer on the microcantilever binds with probe molecules in the solution. The difference in deflection between the MHA-covered probe microcantilever and the HDT-covered reference microcantilever was used to compensate for thermal drift. The deflection difference clearly increases with increasing pH in the solution. It was shown that when the pH values of the PBS solutions are high, there were large variations in the deflection of microcantilevers, whereas there were small variations for low pH value. The experimental results show that the microcantilever array functionalized with MHA and HDT can detect pH value with good repeatability.

The development of pH reading system based on vision system (영상 기반 pH 산도 측정 시스템 개발)

  • Moon, Ha-Jung;Lee, Dong-Hoon
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.398-406
    • /
    • 2013
  • Nuclear medicine imaging devices such as PET diagnose disease after injecting radiopharmaceuticals in human body for diagnosis. Radiopharmaceuticals should maintain the proper pH for human body safety. In general, pH paper is used to measure the pH of the radiopharmaceutical. pH of the sample compared with the standard color chart is used for measurement. However, the pH reading difference according to the experience of a rater can be generated. Also, a pH meter for measuring pH has a high sensitivity and contamination of the sensor must be avoided. In this paper, we developed the new hardware device for pH reading method and software was developed with vision algorithm to measure pH easily and simply.

Determination of Urea using Rose Tissue Sensor (장미조직센서를 이용한 요소의 정량)

  • Kim, Bong-Weon;Jeon, Young-Guk;Chung, Chin-Kap
    • Analytical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.313-318
    • /
    • 1993
  • The rose petal tissue biosensor has been constructed by immobilizing New carina rose tissue. Optimum conditions for the determination of urea were investigated using this sensor. Selectivity and life time of this sensor were also obtained. As a result, the biosensor showed the optimum response characteristics in 0.20M phosphate buffer solution at pH 8.0, $37^{\circ}C$ and 50mg of tissue amounts. This sensor was linear from $9.0{\times}10^{-5}$ to $4.0{\times}10^{-3}M$ urea with a slope of 42mV/decade. The limit of detection and response time are $7.0{\times}10^{-5}M$ and 17~19 min.

  • PDF