• Title/Summary/Keyword: pERK

Search Result 874, Processing Time 0.025 seconds

Biphasic activation of extracellular signal-regulated kinase (ERK) 1/2 in epidermal growth factor (EGF)-stimulated SW480 colorectal cancer cells

  • Joo, Donghyun;Woo, Jong Soo;Cho, Kwang-Hyun;Han, Seung Hyun;Min, Tae Sun;Yang, Deok-Chun;Yun, Cheol-Heui
    • BMB Reports
    • /
    • v.49 no.4
    • /
    • pp.220-225
    • /
    • 2016
  • Cancer cells have different characteristics due to the genetic differences where these unique features may strongly influence the effectiveness of therapeutic interventions. Here, we show that the spontaneous reactivation of extracellular signalregulated kinase (ERK), distinct from conventional ERK activation, represents a potent mechanism for cancer cell survival. We studied ERK1/2 activation in vitro in SW480 colorectal cancer cells. Although ERK signaling tends to be transiently activated, we observed the delayed reactivation of ERK1/2 in epidermal growth factor (EGF)-stimulated SW480 cells. This effect was observed even after EGF withdrawal. While phosphorylated ERK1/2 translocated into the nucleus following its primary activation, it remained in the cytoplasm during late-phase activation. The inhibition of primary ERK1/2 activation or protein trafficking, blocked reactivation and concurrently increased caspase 3 activity. Our results suggest that the biphasic activation of ERK1/2 plays a role in cancer cell survival; thus, regulation of ERK1/2 activation may improve the efficacy of cancer therapies that target ERK signaling.

The p90rsk-mediated signaling of ethanol-induced cell proliferation in HepG2 cell line

  • Kim, Han Sang;Kim, Su-Jin;Bae, Jinhyung;Wang, Yiyi;Park, Sun Young;Min, Young Sil;Je, Hyun Dong;Sohn, Uy Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.6
    • /
    • pp.595-603
    • /
    • 2016
  • Ribosomal S6 kinase is a family of serine/threonine protein kinases involved in the regulation of cell viability. There are two subfamilies of ribosomal s6 kinase, (p90rsk, p70rsk). Especially, p90rsk is known to be an important downstream kinase of p44/42 MAPK. We investigated the role of p90rsk on ethanol-induced cell proliferation of HepG2 cells. HepG2 cells were treated with 10~50 mM of ethanol with or without ERK and p90rsk inhibitors. Cell viability was measured by MTT assay. The expression of pERK1, NHE1 was measured by Western blots. The phosphorylation of p90rsk was measured by ELISA kits. The expression of Bcl-2 was measured by qRT-PCR. When the cells were treated with 10~30 mM of ethanol for 24 hour, it showed significant increase in cell viability versus control group. Besides, 10~30 mM of ethanol induced increased expression of pERK1, p-p90rsk, NHE1 and Bcl-2. Moreover treatment of p90rsk inhibitor attenuated the ethanol-induced increase in cell viability and NHE1 and Bcl-2 expression. In summary, these results suggest that p90rsk, a downstream kinase of ERK, plays a stimulatory role on ethanol-induced hepatocellular carcinoma progression by activating anti-apoptotic factor Bcl-2 and NHE1 known to regulate cell survival.

The Expression changes of AMPK, ERK-1/2, and p38 protein associated with Exercise in the Mouse hippocampus exposed to Radiofrequency Radiation (전자파(電磁波)에 노출된 생쥐의 해마에서 운동이 AMPK, ERK-1/2, p38 단백 발현 변화에 미치는 생체 영향)

  • Lee, Min-Sun;Park, Oak Jin;Kim, Hyun Taeg;Kim, Myeung Ju
    • Journal of Digital Convergence
    • /
    • v.18 no.3
    • /
    • pp.267-273
    • /
    • 2020
  • To determine the biological effects of exercise on hippocampus in mice brain exposed to radiofrequency radiaton (RF), the expression of AMPKα, p-AMPKα, ERK1/2, p-ERK1/2, p38, and p-p38 protein in the mouse exposed to RF were investigated in the hippocampal tissues, Western blot method was used to compare the protein expression levels for each molecule. Significant increases in protein expression of individual and phosphorylated molecules were observed in the spontaneous exercise group, and the expression of these molecules was notably decreased in the RF exposure and spontaneous exercise group. This study shows that neuroplasticity can be increased by exercise in hippocampus that is responsible for memory, but memory and cognitive function may be affected by exposure to RF. We may expect clinically interesting results on dementia or Alzheimer disease if we proceed further investigation on the effect of RF.

Hesperetin Ameliorates Inflammatory Responses in Lipopolysaccharide-stimulated RAW 264.7 Cells via p38 MAPK and ERK1/2 (마우스 대식세포 RAW 264.7 세포주에서 hesperetin에 의한 p38 MAPK와 ERK1/2를 통한 염증반응 조절)

  • Lee, Seung-Hoon;Lee, Eun-Joo;Chung, Chungwook;Sohn, Ho-Yong;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.129-134
    • /
    • 2019
  • In a previous study, we isolated 11 different kinds of compounds from ethyl acetate fractions of lees (jubak) which is a by-product of Korean traditional wine production. These compounds were identified as caffeic acid, coumaric acid, D-mannitol, ferulic acid, hesperetin, hesperidin, naringenin, naringin, sinapic acid, syringic acid, and vanilic acid. To evaluate their anti-inflammatory activities in an in vitro model, nitric oxide (NO) production was measured in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells after the treatment of these cells with each compound. Among the various chemicals, hesperetin and naringenin showed the highest inhibition of NO production in the LPS-activated RAW 264.7 cells. Hesperetin was chosen for further study because of its strong anti-inflammatory activity and because the mechanisms underlying its anti-inflammatory properties still remain unclear. Our results showed that hesperetin dramatically inhibited NO production in a dose-dependent manner as compared with in an LPS-only treated group, without affecting cell viability. In addition, hesperetin reduced the protein expression of the pro-inflammatory gene inducible nitric oxide synthase (iNOS) in a dose-dependent manner, whereas it did not affect cyclooxygenase-2 (COX-2) expression. Furthermore, hesperetin inhibited phosphorylation of p38 mitogen- activated protein kinase (MAPK) and extracellular signal regulated kinase (ERK) 1/2, whereas it did not affect phosphorylation of c-jun N- terminal kinase (JNK). The results indicated that hesperetin regulated the LPS-induced inflammatory response by suppressing p38 MAPK and ERK1/2 signaling. Overall, our results may help to understand the mechanisms underlying the anti-inflammatory activity mediated by hesperetin.

Immune-enhancing Activity of Paeonia lactiflora through TLR4-dependent Activation of p38, JNK, and ERK1/2 RAW264.7 Cells

  • Jeong Won Choi;Hyeok Jin Choi;Gwang Hyeon Ryu;Seung Woo Im;Jae Won Lee;Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.47-47
    • /
    • 2023
  • Paeonia lactiflora roots (PLR) are a medicinal plant widely used for treating inflammatory diseases. However, PLR has been recently reported to increase the production of proinflammatory mediators and activates phagocytosis in macrophages. Thus, in this study, we tried to verify the macrophage activation of PLR and elucidate its mechanism of action. PLR upregulated the production of proinflammatory mediators and activated phagocytosis in RAW264.7 cells. However, these effects were reversed by inhibition of TLR2/4. In addition, the inhibition of p38, JNK, and ERK1/2 reduced the PLR-mediated production of proinflammatory mediators, and the PLR-mediated activation of p38, JNK, and ERK1/2 was blocked by the TLR4 inhibition. These findings indicate that PLR may activate macrophages through TLR4-dependent activation of p38, JNK, and ERK1/2. These indicate that PLR has immunostimulatory activity. Thus, it is believed that PLR can be used as a functional food agent that enhances the immune system.

  • PDF

Neuroprotective effects of erythropoietin against hypoxic injury via modulation of the mitogen-activated protein kinase pathway and apoptosis

  • Jeong, Ji Eun;Park, Jae Hyun;Kim, Chun Soo;Lee, Sang Lak;Chung, Hai Lee;Kim, Woo Taek;Lee, Eun Joo
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.6
    • /
    • pp.181-188
    • /
    • 2017
  • Purpose: Hypoxic-ischemic encephalopathy is a significant cause of neonatal morbidity and mortality. Erythropoietin (EPO) is emerging as a therapeutic candidate for neuroprotection. Therefore, this study was designed to determine the neuroprotective role of recombinant human EPO (rHuEPO) and the possible mechanisms by which mitogen-activated protein kinase (MAPK) signaling pathway including extracellular signal-regulated kinase (ERK1/2), JNK, and p38 MAPK is modulated in cultured cortical neuronal cells and astrocytes. Methods: Primary neuronal cells and astrocytes were prepared from cortices of ICR mouse embryos and divided into the normoxic, hypoxia (H), and hypoxia-pretreated with EPO (H+EPO) groups. The phosphorylation of MAPK pathway was quantified using western blot, and the apoptosis was assessed by caspase-3 measurement and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Results: All MAPK pathway signals were activated by hypoxia in the neuronal cells and astrocytes (P<0.05). In the neuronal cells, phosphorylation of ERK-1/-2 and apoptosis were significantly decreased in the H+EPO group at 15 hours after hypoxia (P<0.05). In the astrocytes, phosphorylation of ERK-1/-2, p38 MAPK, and apoptosis was reduced in the H+EPO group at 15 hours after hypoxia (P<0.05). Conclusion: Pretreatment with rHuEPO exerts neuroprotective effects against hypoxic injury reducing apoptosis by caspase-dependent mechanisms. Pathologic, persistent ERK activation after hypoxic injury may be attenuateed by pretreatment with EPO supporting that EPO may regulate apoptosis by affecting ERK pathways.

Dual control of the vestibulosympathetic reflex following hypotension in rats

  • Park, Sang Eon;Jin, Yuan-Zhe;Park, Byung Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.6
    • /
    • pp.675-686
    • /
    • 2017
  • Orthostatic hypotension (OH) is associated with symptoms including headache, dizziness, and syncope. The incidence of OH increases with age. Attenuation of the vestibulosympathetic reflex (VSR) is also associated with an increased incidence of OH. In order to understand the pathophysiology of OH, we investigated the physiological characteristics of the VSR in the disorder. We applied sodium nitroprusside (SNP) to conscious rats with sinoaortic denervation in order to induce hypotension. Expression of pERK in the intermediolateral cell column (IMC) of the T4~7 thoracic spinal regions, blood epinephrine levels, and blood pressure were evaluated following the administration of glutamate and/or SNP. SNP-induced hypotension led to increased pERK expression in the medial vestibular nucleus (MVN), rostral ventrolateral medullary nucleus (RVLM) and the IMC, as well as increased blood epinephrine levels. We co-administered either a glutamate receptor agonist or a glutamate receptor antagonist to the MVN or the RVLM. The administration of the glutamate receptor agonists, AMPA or NMDA, to the MVN or RVLM led to elevated blood pressure, increased pERK expression in the IMC, and increased blood epinephrine levels. Administration of the glutamate receptor antagonists, CNQX or MK801, to the MVN or RVLM attenuated the increased pERK expression and blood epinephrine levels caused by SNP-induced hypotension. These results suggest that two components of the pathway which maintains blood pressure are involved in the VSR induced by SNP. These are the neurogenic control of blood pressure via the RVLM and the humoral control of blood pressure via epinephrine release from the adrenal medulla.

UV-responsive intracellular signaling pathways: MAPK, p53, and their crosstalk

  • Matsuda, Naoki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.229-232
    • /
    • 2002
  • There are two distinct UV-responsive signaling pathways in UV-irradiated mammalian cells, i.e., the DNA damage-dependent and -independent pathways. The former occurs in nucleus and results in growth arrest and apoptosis via post-translational modification of p53. The latter is initiated by oxidative stress and/or by damages in cell membrane or cytoplasm, which activate signaling cascade through intracellular molecules including mitogen activated protein kinases (MAPK). In normal human fibroblastic cells, all of MAPK family members, extracellular signal-related kinases (ERK), c-Jun N-terminal kinases (JNK) and p38, were rapidly phosphorylated following UV-irradiation. ERK phosphorylation was suppressed by an inhibitor of receptor tyrosine kinases (RTK). As ERK usually responds to mitogenic stimuli from RTK ligands, UV-induced ERK phosphorylation may be linked to the proliferation of survived cells. In contrast, phosphorylation of JNK and p38, as well as apoptosis, were modulated by the level of UV-generated oxidative stress Therefore, JNK and p38 may take part in oxidative stress-mediated apoptosis. Phosphorylation of p53 at Ser and Thr residues are essential for stabilization and activation of p53. Among several sites reported, we confirmed phosphorylation at Ser-15 and Ser-392 after UV-irradiation. Both of these were inhibited by a phosphoinositide 3-kinase inhibitor, presumably due to the shutdown of signals from DNA damage to p53. Phosphorylation at Ser-392 was also sensitive to an antioxidant and a p38 inhibitor, suggesting that Ser-392 of p53 is one of the possible points where DNA damage-dependent and -independent apoptic signals merge. Thus, MAPK pathway links UV-induced intracellular signals to the nuclear responses and modifies DNA damage-dependent cellular outcome, resulting in the determination of cell death.

  • PDF

The Effect of Uteroglobin on cPLA2, COX-2 Expression and ERK Activation in NSCLC Cells (비소세포 폐암세포에서 Uteroglobin의 이입에 의한 cPLA2와 COX-2 발현 및 ERK 활성의 변화)

  • Kim, Woo Jin;Yoon, Jung Min;Lee, Kyoung Hee;Han, Seon Jin;Shin, Won Hyuk;Yim, Jae-Joon;Yoo, Chul-Gyu;Lee, Choon Taek;Han, Sung Koo;Shim, Young-Soo;Kim, Young Whan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.6
    • /
    • pp.638-645
    • /
    • 2004
  • Background : Uteroglobin is a protein produced by the normal bronchial epithelium and its expression level is lower in non-small cell lung cancer tissues and cell lines. It mainly functions as an anti-inflammatory, and when it is overexpressed in cancer cells, the neoplastic phenotype is antagonized. cPLA2 and COX-2, which are also associated with inflammation, were reported to be related to cancer. The relationship between cPLA2, COX-2 and uteroglobin is unclear. The relationship between uteroglobin and ERK, which is related to cell growth, is also not unclear. This study investigated the changes in the cPLA2 and COX-2 expression levels and the ERK activities after the overexpression of uteroglobin in non-small cell lung cancer cell lines. Methods : The A549 and NCI-H460 cell lines were infected by adenovirus-null and adenovirusuteroglobin. The cChange in the cPLA2, COX-2 expression level and ERK activity after uteroglobin overexpression was measured by Western blot. The change in MMP activity was measured by zymography. Results : Western blot revealed decreased expression levels of cPLA2, and COX-2, and increased pERK levels in nonsmall cell lung cancer cells after uteroglobin overexpression. Zymography revealed no changes in the MMP-2 activity and lower MMP-9 activity. U0126, which is a specific inhibitor of ERK-activating kinase MEK-1/-2, prevented the decrease in the MMP-9 activity Conclusions : A decrease in cPLA2 expression, COX-2 expression, MMP-9 activity and a increase in ERK activity may be related to the anticancer effects of uteroglobin in nonsmall cell lung cancer cells.

Cyclooxygenase-2 Induction in Porphyromonas gingivalis-Infected THP-1 Monocytic Cells

  • Choi, Eun-Kyoung;Oh, Byung-Ho;Kang, In-Chol
    • International Journal of Oral Biology
    • /
    • v.31 no.1
    • /
    • pp.21-26
    • /
    • 2006
  • Periodontopathogens including Porphyromonas gingivalis interact with host periodontal cells and the excessive subsequent host responses contribute a major part to the development of periodontal diseases. Cyclooxygenase(COX)-2-synthesized $PGE_2$ has detrimental activities in terms of periodontal pathogenesis. The present study investigated induction of COX-2 expression by P. gingivalis in human monocytic THP-1 cells. Live P. gingivalis increased expression of COX-2, but not that of COX-1, which was demonstrated at both mRNA and protein levels. Elevated levels of $PGE_2$ were released from P. gingivalis-infected THP-1 cells. Pharma-cological inhibition of p38 mitogen-activated protein kinase(MAPK) and extracellular signal-regulated kinase(ERK) substantially attenuated P. gingivalis-induced COX-2 mRNA expression. Indeed, activation of p38 MAPK and ERK was observed in P. gingivalis-infected THP-1 cells. Also, P. gingivalis induced activation of nuclear $factor-{\kappa}B\;(NF-{\kappa}B)$ which is an important transcription factor for COX-2. These results suggest that COX-2 expression is up regulated in P. gingivalis-infected monocytic cells, at least in part, via p38 MAPK, ERK, and $NF-{\kappa}B$.