• Title/Summary/Keyword: p53gene

Search Result 624, Processing Time 0.038 seconds

Clinicopathological and p53 Gene Alteration Comparison between Young and Older Patients with Gastric Cancer

  • Karim, Sajjad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1375-1379
    • /
    • 2014
  • Background: Differences in clinicopathological characteristics of gastric cancer (GC) between young and older patients are controversial and a matter of debate. Determining the statistical significance of clinicopathological information with respect to age might provide clues for better management and treatment ofGC. Materials and Methods: A total ofl03 Indiao GC patients were enrolled for study and specimens were classified according to the AjCC-TNM system. Patients were grouped into two age-wise categories, young patients (<40 years; n=13) and older patients (${\geq}40$ years, n=90). The clinicopathological features of both groups were retrospectively examined and compared. p53 alterations were analyzed by polymerase chain reaction-single strand conformational polymorphism and immunohistochemistry methods at gene and protein levels respectively. The cases were considered p53 over-expressed if it was present in more than 25% of the tumor cells and p53 alterations was correlated with the clinicopathological characteristics of the patients as well as etiological factors for GC in both groups. Results: We found significant association of young patients with cancer stage (p=0.01), and very strong association with histology grade (p=0.064) and poorly differentiated (p=0.051) state of GC. However, neither young nor elderly patients showed associations with location, gender, etiological factors and p53 expression and alteration. Overall the male-to-female ratio of GC patients was 3.12 and the value was higher in the young (5.5) than in the older group (2.91). Conclusions: Clinicopathological features of GC like caocer stage, cell differentiation and histological grades were significantly different among young and old age cohorts. We observed a male predominance among the young group that decreased significantly with advancing age. More awareness of GC onset is required to detect cancer at an early stage for successful treatment.

Berberine Induces p53-Dependent Apoptosis through Inhibition of DNA Methyltransferase3b in Hep3B Cells (Hep3B 세포에서 베르베린은 DNA methyltransferase3b 억제를 통해 p53을 발현시켜 세포사멸을 유도)

  • Kim, Dae-Yeon;Kim, Seon-Hyoung;Cheong, Hee-Tae;Ra, Chang-Six;Rhee, Ki-Jong;Jung, Bae Dong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.1
    • /
    • pp.69-77
    • /
    • 2020
  • The tumor suppressor gene, p53, is inactivated in the human hepatocellular carcinoma cells line, Hep3B. Berberine has been reported to inhibit the proliferation of cancer cells. This study examined whether apoptosis was induced in berberine-treated Hep3B cells and observed the association between apoptosis and the expression of p53 and DNA methyltransferase (DNMT). The cell viability was measured using an MTT assay. Apoptosis of Hep3B was measured using annexin V flow cytometry. Berberine-treated cells were examined for their DNMT enzymatic activity, mRNA expression, and protein synthesis. The p53 levels were examined by Western blot analysis. The berberine treatment resulted in increased Hep3B cell death and apoptosis in a time- and dose-dependent manner. The DNMT3b activity, mRNA expression, and protein levels all decreased after the berberine treatment. In contrast, the p53 protein levels increased with a concomitant decrease in DNMT3b. No change in the expression of ERK was observed, but the P-ERK levels decreased in a dose dependent manner. These results indicate that a treatment of Hep3B cells with berberine can reduce the expression of DNMT3b, leading to an increase in the tumor suppressant gene p53 and an increase in cell apoptosis. This shows that berberine can effectively suppress the proliferation of liver cancer cells.

Structural Characterization of Mouse HAUSP, a Proteolysis Regulator of p53

  • Lee, Hye-Jin;Yoo, Kyong-Jai;Baek, Kwang-Hyun
    • Animal cells and systems
    • /
    • v.8 no.3
    • /
    • pp.205-212
    • /
    • 2004
  • The tumor suppressor protein p53 is stabilized by the herpes-virus-associated ubiquitin-specific protease (HAUSP), a deubiquitinating enzyme. We previously isolated and characterized a mouse orthologue of HAUSP, mHAUSP. mHAUSP cDNA consisted of 3,312 bp encodes 1,103 amino acids with a molecular weight of approximately 135 kDa containing highly conserved Cys, Asp (I), His, and Asn/Asp (II) domains. In this study, we carried out site-directed mutagenesis of 6 conserved amino acids (Cys224, Gln231, Asp296, His457, His465, and Asp482) in Cys box, QQD box, and His box. Interestingly, the conserved Gln 231 was not essential for the catalytic activity of mHAUSP. However, the other conserved amino acids were required for deubiquitinating activity of mHAUSP. We performed isopeptidase assay and confirmed that mHAUSP is able to remove ubiquitin from ubiquitinated substrates. In addition, we observed that mHAUSP induces apoptosis in HeLa cells.

PIG3 Regulates p53 Stability by Suppressing Its MDM2-Mediated Ubiquitination

  • Jin, Min;Park, Seon-Joo;Kim, Seok Won;Kim, Hye Rim;Hyun, Jin Won;Lee, Jung-Hee
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.396-403
    • /
    • 2017
  • Under normal, non-stressed conditions, intracellular p53 is continually ubiquitinated by MDM2 and targeted for degradation. However, in response to severe genotoxic stress, p53 protein levels are markedly increased and apoptotic cell death is triggered. Inhibiting the ubiquitination of p53 under conditions where DNA damage has occurred is therefore crucial for preventing the development of cancer, because if cells with severely damaged genomes are not removed from the population, uncontrolled growth can result. However, questions remain about the cellular mechanisms underlying the regulation of p53 stability. In this study, we show that p53-inducible gene 3 (PIG3), which is a transcriptional target of p53, regulates p53 stability. Overexpression of PIG3 stabilized both endogenous and transfected wild-type p53, whereas a knockdown of PIG3 lead to a reduction in both endogenous and UV-induced p53 levels in p53-proficient human cancer cells. Using both in vivo and in vitro ubiquitination assays, we found that PIG3 suppressed both ubiquitination- and MDM2-dependent proteasomal degradation of p53. Notably, we demonstrate that PIG3 interacts directly with MDM2 and promoted MDM2 ubiquitination. Moreover, elimination of endogenous PIG3 in p53-proficient HCT116 cells decreased p53 phosphorylation in response to UV irradiation. These results suggest an important role for PIG3 in regulating intracellular p53 levels through the inhibition of p53 ubiquitination.

Molecular-vased sensitivity of human leukemia cell line U937 to antineoplastic activity in a traditional medicinal plants(Selaginella tamariscina) (전통 약용 식물 권백(Selaginella tamariscina)의 항암효과에 대한 혈액 암세포주 U937의 감수성 및 그 작용기구에 대한 분자생물학적 연구)

  • 이인자;이인선;박성희
    • Journal of Food Hygiene and Safety
    • /
    • v.11 no.1
    • /
    • pp.71-75
    • /
    • 1996
  • In order to study the antitumoral effect of Selaginella tamariscina extracts, the cytotoxicities to human histiocytic leukemia cells (U937) and lymphocyte were measured by MTT method. The water extract of Selaginella tamariscina was partitioned into chloroform (CHCl3), ethylacetate (EtAc), n-butanol (BuOH) and water (H2O), successively. CHCl3, EtAc and BuOH fractions of Selaginella tamariscina showed the cytotoxicity to the U937 cells but they had effect on the cytotoxicity of lymphocyte under the same conditions. The tumor-specific cytotoxicity of Selaginella tamariscina fractions migh have been attributed to their genotoxic effect on actively proliferating cells. The expression of p53 tumor suppressor gene was then evaluated by northern blotting. The increased expression of p53 was induced by Selaginella tamariscina fraction V but no expression of p53 was induced by CHCl3, EtAc, and BuOH fractions of Selaginella tamariscina water extract (fraction V) should be required for the cytotoxcity on U937 and the other fractions of Selaginella tamariscina mediated the U937 disruption.

  • PDF

MDM2 and TP53 Polymorphisms as Predictive Markers for Head and Neck Cancer in Northeast Indian Population: Effect of Gene-Gene and Gene-Environment Interactions

  • Bhowmik, Aditi;Das, Sambuddha;Bhattacharjee, Abhinandan;Choudhury, Biswadeep;Naiding, Momota;Deka, Sujata;Ghosh, Sankar Kumar;Choudhury, Yashmin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5767-5772
    • /
    • 2015
  • Background: Polymorphisms in the MDM2 309 (T>G) and TP53 72 (G>C) genes are reported to increase the susceptibility to head and neck cancer (HNC) in various populations. The risk for HNC is also strongly associated with etiologic habits such as smoking, alcohol consumption and/or chewing of betel quid (BQ). In a case-control study, we investigated the significance of the above polymorphisms alone, and upon interaction with one another as well as with various etiologic habits in determining HNC risk in a Northeast Indian population. Materials and Methods: Genotyping at 309 MDM2 and 72 TP53 in 122 HNC patients and 86 cancer free healthy controls was performed by PCR using allele specific primers, and the results were confirmed by DNA sequencing. Results: Individuals with the GG mutant allele of MDM2 showed a higher risk for HNC in comparison to those with the TT wild type allele (OR=1.9, 95%CI: 1.1-3.3) (p=0.022). The risk was further increased in females by ~4-fold (OR=4.6, 95% CI: 1.1-19.4) (P=0.04). TP53 polymorphism did not contribute to HNC risk alone; however, interaction between the TP53 GC and MDM2 GG genotypes resulted in significant risk (OR=4.9, 95% CI: 0.2-105.1) (p=0.04). Smokers, BQ- chewers and alcohol consumers showed statistically significant and dose-dependent increase in HNC risk, irrespective of the MDM2 genotype. Conclusions: MDM2 genotype could serve as an important predictive biomarker for HNC risk in the population of Northeast India.

Fnr, NarL and NarP Regulation and Time Course Expression of Escherichia coli aeg-46.5 Gene

  • Ahn, Ju-Hyuk;Choe, Mu-Hyeon
    • BMB Reports
    • /
    • v.29 no.1
    • /
    • pp.88-91
    • /
    • 1996
  • The anaerobically expressed gene aeg-46.5, which had been identified by the operon fusion technique with a hybrid bacteriophage of ${\lambda}$ and Mu, ${\lambda}$placMu53, was studied for its expression pattern and growth. The expression of aeg-46.5 was studied in the wild-type cell and mutant cells that have mutation (s) in the control gene of anaerobic respiration (fnr) and nitrate response (narL and narP). The ${\beta}$-galactosidase reporter gene showed maximum expression in narL host after two hours of aerobic to anaerobic switch in M9-Glc-nitrate medium. Both 40 mM and 100 mM concentrations of nitrate ion in the medium had little effect on expression level. We propose that aeg-46.5 is subject to multiple regulations of anaerobic activation by Fnr, nitrate activation by NarP and repression mediated by NarL.

  • PDF

Streptozotocin, an O-GlcNAcase Inhibitor, Stimulates $TNF\alpha -Induced$ Cell Death

  • Yang Won-Ho;Ju Jung-Won;Cho Jin Won
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.65-67
    • /
    • 2004
  • O-GlcNAcylation of p53 has been already identified and reported, but the function of O-GlcNAc on p53 has not been studied well. In this report, the general function of O-GlcNAc modification on p53 has been investigated using mouse fibroblast cell, L929. When streptozotocin (STZ), a non-competitive O-GlcNAcase inhibitor was treated to L929, O-GlcNAc modification level was dramatically increased on nucleocytoplasmic proteins, including p53. Because it has been already reported that $TNF\alpha$ induced the production of p53 in L929, $TNF\alpha$ was treated to obtain more p53. Approximately two times more amount of p53 was found from the cells treated STZ and $TNF\alpha$ simultaneously compared to the cell treated $TNF\alpha$ alone. The p53 increment in the presence of STZ was not caused by the induction of p53 gene expression. When new production of p53 induced by the $TNF\alpha$ was inhibited by the treatment of cycloheximide, O-GlcNAc modification decreased and phosphorylation increased on pre-existing p53 after $TNF\alpha$ treatment. But in the presence of STZ and $TNF\alpha$ at the same time, more O-GlcNAcylation occurred on p53, The level of ubiquitination on p53 was also reduced in the presence of STZ. Approximately three times less amount of Mdm2 bound to this hyperglycosylated p53. From this result it might be concluded that treatment of STZ to inhibit O-GlcNAcase increased O-GlcNAc modification level on p53 and the increment of O-GlcNAc modification stabilized p53 from ubiquitin proteolysis system.

  • PDF

Expression of Mouse $\alpha-Amylase$ Gene in Methylotrophic Yeast Pichia pastoris

  • Uehara Hiroyuki;Choi Du Bok;Park Enoch Y.;Okabe Mitsuyasu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.7-12
    • /
    • 2000
  • The expression of the mouse $\alpha-amylase$ gene in the methylotrophic yeast, P pastoris was investigated. The mouse $\alpha-amylase$ gene was inserted into the multi-cloning site of a Pichi a expression vector, pPIC9, yielding a new expression vector pME624. The plasmid pME624 was digested with SalI or BglII, and was introduced into P. pastoris strain GSl15 by the PEG1000 method. Fifty-three transformants were obtained by the transplacement of pME624 digested with SaiII or BglII into the HIS4locus $(38\;of\;Mut^+\;clone)$ or into the AOX1 locus $(15\;of\;Mut^s\;clone)$. Southern blot was carried out in 11 transformants, which showed that the mouse $\alpha-amylase$ gene was integrated into the Pichia chromosome. When the second screening was performed in shaker culture, transformant G2 showed the highest $\alpha-amylase$ activity, 290 units/ml after 3-day culture, among 53 transformants. When this expression level of the mouse $\alpha-amylase$ gene is compared with that in recombinant Saccharomyces cerevisiae harboring a plasmid encoding the same mouse $\alpha-amylase$ gene, the specific enzyme activity is eight fold higher than that of the recombinant S. cerevisiae.

  • PDF

Caffeic Acid Phenethyl Ester Induces the Expression of NAG-1 via Activating Transcription Factor 3 (ATF3를 통한 caffeic acid phenethyl ester에 의한 NAG-1 유전자의 발현 증가)

  • Park, Min-Hee;Chung, Chungwook;Lee, Seong Ho;Baek, Seung Joon;Kim, Jong Sik
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.37-42
    • /
    • 2018
  • Non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) is a transforming growth factor beta (TGF-${\beta}$) superfamily gene associated with pro-apoptotic and anti-tumorigenic activities. In the present study, we investigated if caffeic acid phenethyl ester (CAPE) derived from propolis could induce the expression of anti-tumorigenic gene NAG-1. Our results indicate that CAPE significantly induced NAG-1 expression in a time- and concentration-dependent manner in HCT116 cells. We also found that CAPE induced NAG-1 expression in a concentration-dependent manner in another human colorectal cancer cell line, LOVO. In addition, CAPE triggered apoptosis, which was detected with Western blot analysis using poly-(ADP-ribose) polymerase antibody. NAG-1 induction by CAPE was not dependent on transcription factor p53, which was confirmed with Western blot analysis using p53 null HCT116 cells. The luciferase assay results indicated that the new cis-elements candidates were located between -474 and -1,086 of the NAG-1 gene promoter. CAPE dramatically induced activating transcription factor 3 (ATF3) expression, but not cAMP response element-binding protein (CREB), which shares the same binding sites with ATF3. The co-transfection experiment with pCG-ATF3 and pCREB showed that only ATF3 was associated with NAG-1 up-regulation by CAPE, whereas CREB had no effect. In conclusion, the results suggest that CAPE could induce the expression of anti-tumorigenic gene NAG-1 mainly through ATF3.