• Title/Summary/Keyword: p53 pathway

Search Result 253, Processing Time 0.032 seconds

Sequence Characteristics of xylJQK Genes Responsible for Catechol Degradation in Benzoate-Catabolizing Pseudomonas sp. S-47

  • Park, Dong-Woo;Lee, Jun-Hun;Lee, Dong-Hun;Lee, Kyoung;Kim, Chi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.700-705
    • /
    • 2003
  • Pseudomonas sp. S-47 is capable of degrading benzoate and 4-chlorobenzoate as well as catechol and 4-chlorocatechol via the meta-cleavage pathway. The three enzymes of 2-oxopenta-4-enoate hydratase (OEH), acetaldehyde dehydrogenase (acylating) (ADA), and 2-oxo-4-hydroxypentonate aldolase (HOA) encoded by xylJQK genes are responsible for the three steps after the meta-cleavage of catechol. The nucleotide sequence of the xylJQK genes located in the chromosomal DNA was cloned and analyzed. GC content of xylJ, xylQ, and xylK was 65% and consisted of 786, 924, and 1,041 nucleotides, respectively. The deduced amino acid sequences of xylJ, xylQ, and xylK genes from Pseudomonas sp. S-47 showed 93%, 99%, and 99% identity, compared with those of nahT, nahH, and nahI in Pseudomonas stutzeri An10. However, there were only about 53% to 85% identity with xylJQK of Pseudomonas putida mt-2, dmpEFG of P. putida CF600, aphEFG of Comamonas testosteroni TA441, and ipbEGF of P. putida RE204. On the other hand, the xylLTEGF genes located upstream of xylJQK in the strain S-47 showed high homology with those of TOL plasmid from Pseudomonas putida mt-2. These findings suggested that the xylLTEGFIJQK of Pseudomonas sp. S-47 responsible for complete degradation of benzoate and then catechol via the meta-pathway were phylogenetically recombinated from the genes of Pseudomonas putida mt-2 and Pseudomonas stutzeri An10.

Mistletoe Lectin Induces Apoptosis and Telomerase Inhibition in Human A253 Cancer Cells through Dephosphorylation of Akt

  • Choi, Sang-Hoi;Lyu, Su-Yun;Park, Won-Bong
    • Archives of Pharmacal Research
    • /
    • v.27 no.1
    • /
    • pp.68-76
    • /
    • 2004
  • Mistletoe lectin has been reported to induce apoptosis in different cancer cell lines in vitro and to show antitumor activity against a variety of tumors in animal models. We previously demonstrated the Korean mistletoe lectin (Viscum album var. coloratum, VCA)-induced apoptosis by down-regulation of Bcl-2 and telomerase activity and by up-regulation of Bax through p53- and p21-independent pathway in hepatoma cells. In the present study, we observed the induction of apoptotic cell death through activation of caspase-3 and the inhibition of telomerase activity through transcriptional down-regulation of hTERT in the VCA-treated A253 cells. We also observed the inhibition of telomerase activity and induction of apoptosis resulted from dephosphorylation of Akt in the survival signaling pathways. In addition, combining VCA with the inhibitors of phosphatidylinositol 3-kinase (PI3-kinase) upstream of Akt, wortmannin and LY294002 showed an additive inhibitory effect of telomerase activity. In contrast, the inhibitor of protein phosphatase 2A (PP2A), okadaic acid inhibited VCA-induced dephosphorylation of Akt and inhibition of telomerase activity. Taken together, VCA induces apoptotic cell death through Akt signaling pathway in correlated with the inhibition of telomerase activity and the activation of caspase-3. From these results, together with our previous studies, we suggest that VCA triggers molecular changes that resulting in the inhibition of cell growth and the induction of apoptotic cell death of cancer cells, which suggest that VCA may be useful as chemotherapeutic agent for cancer cells.

Bitter taste receptors protect against skin aging by inhibiting cellular senescence and enhancing wound healing

  • Chung, Min Gi;Kim, Yerin;Cha, Yeon Kyung;Park, Tai Hyun;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • v.16 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Bitter taste receptors are taste signaling pathway mediators, and are also expressed and function in extra-gustatory organs. Skin aging affects the quality of life and may lead to medical issues. The purpose of this study was to better understand the anti-skin aging effects of bitter taste receptors in D-galactose (D-gal)-induced aged human keratinocytes, HaCaT cells. MATERIALS/METHODS: Expressions of bitter taste receptors in HaCaT cells and mouse skin tissues were examined by polymerase chain reaction assay. Bitter taste receptor was overexpressed in HaCaT cells, and D-gal was treated to induce aging. We examined the effects of bitter taste receptors on aging by using β-galactosidase assay, wound healing assay, and Western blot assay. RESULTS: TAS2R16 and TAS2R10 were expressed in HaCaT cells and were upregulated by D-gal treatment. TAS2R16 exerted protective effects against skin aging by regulating p53 and p21, antioxidant enzymes, the SIRT1/mechanistic target of rapamycin pathway, cell migration, and epithelial-mesenchymal transition markers. TAS2R10 was further examined to confirm a role of TAS2R16 in cellular senescence and wound healing in D-gal-induced aged HaCaT cells. CONCLUSIONS: Our results suggest a novel potential preventive role of these receptors on skin aging by regulating cellular senescence and wound healing in human keratinocyte, HaCaT.

Effect of Ailanthus altissima Water Extract on Cell Cycle Control Genes in Jurkat T Lymphocytes (Jurkat T 임파구의 세포주기 기전에 미치는 저근백피(Ailanthus altissima)의 효과)

  • 전병훈;황상구;이형철;김춘관;김대근;이기옥;윤용갑
    • YAKHAK HOEJI
    • /
    • v.46 no.1
    • /
    • pp.18-23
    • /
    • 2002
  • Ailanthus altissima has been used to settle an upset stomach, to alleviate a fever and as an insecticide. We reported that the water extract of A. altissima induced apoptotic cell death in Jurkat T-acute Iymphoblastic leukemia cells. Here, we showed the dose-dependent inhibitions of cell viability by the extract, as measured by cell morphology. The cell cycle control genes are considered to play important roles in tumorigenesis. The purpose of the present study is also to investigate the effect of A. altissima on cell cycle progression and its molecular mechanism in the cells. The level of p21 protein was increased after treatment of the extract, whereas both Bcl-2 and Bax protein levels were not changed. These results suggest that A. altissima induces apoptotic cell death via p21-dependent signaling pathway in Jurkat cells which delete wild type p53. Gl checkpoint related gene products tested (cyclin D3, cyclin dependent kinase 4, retinoblastoma, E2Fl) were decreased in their protein levels in a dose-dependent manner after treatment of the extract Taken together, these results indicate that the increase of apoptotic cell death by A. altissima may be due to the inhibition of cell cycle in Jurkat cells.

The Inhibitory Effects of Bee Venom and Melittin on the Proliferation of Vascular Smooth Muscle Cells

  • Ha, Seong-Jong;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.23 no.2
    • /
    • pp.139-157
    • /
    • 2006
  • In the present study, I have investigated the bee venom (BV) and melittin (a major component of BV) -mediated anti-proliferative effects, and defined its mechanisms of action in cultured rat aortic vascular smooth muscle cells (VSMCs). BV and melittin $(0.4{\sim}0.8\;{\mu}g/ml)$ effectively inhibited 50 ng/ml platelet derived growth factor BB (PDGF-BB)-induced VSMCs proliferations. The regulation of apoptosis has attracted much attention as a possible means of eliminating excessively proliferating VSMCs. In the present study, the treatment of BV and melittin strongly induced apoptosis of VSMCs. I examined the effects on $NF-{\kappa}B$ activation to investigate a possible mechanism for anti-proliferative effects of BV and melittin, the PDGF-BB-induced $I{\kappa}B{\alpha}$ phosphorylation and its degradation were potently inhibited by melittin, and DNA binding activity and nuclear translocation of $NF-{\kappa}B$ p50 subunit in response to the action of PDGF-BB were potently attenuated by melittin. In further investigations, melittin markedly inhibited the PDGF-BB-induced phosphorylation of Akt but not ERK1/2, upstream signals of $NF-{\kappa}B$. Treatment of melittin also potently induced pro-apoptotic protein p53, Bax, and caspase-3 expression, but decreased anti-apoptotic protein Bcl-2 expression. These results suggest that the anti-proliferative effects of BV and melittin in VSMCs through induction of apoptosis via suppressions of $NF-{\kappa}B$ and Akt activation, and enhancement of apoptotic signal pathway. Based on these results, BV acupuncture can be a candidate as a therapeutic method for restenosis and atherosclerosis.

  • PDF

Drosophila melanogaster: a Model for the Study of DNA Damage Checkpoint Response

  • Song, Young-Han
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.167-179
    • /
    • 2005
  • The cells of metazoans respond to DNA damage by either arresting their cell cycle in order to repair the DNA, or by undergoing apoptosis. This response is highly conserved across species, and many of the genes involved in this DNA damage response have been shown to be inactivated in human cancers. This suggests the importance of DNA damage response with regard to the prevention of cancer. The DNA damage checkpoint responses vary greatly depending on the developmental context, cell type, gene expression profile, and the degree and nature of the DNA lesions. More valuable information can be obtained from studies utilizing whole organisms in which the molecular basis of development has been well established, such as Drosophila. Since the discovery of the Drosophila p53 orthologue, various aspects of DNA damage responses have been studied in Drosophila. In this review, I will summarize the current knowledge on the DNA damage checkpoint response in Drosophila. With the ease of genetic, cellular, and cytological approaches, Drosophila will become an increasingly valuable model organism for the study of mechanisms inherent to cancer formation associated with defects in the DNA damage pathway.

Differential Sensitivities of Human Multidrug-resistant Cancer Cells to BIIB021 and Modulation of Hsp90 Inhibitors by NSAIDs and Niclosamide (항암제 다제내성(MDR) 암세포의 Hsp90 저해제 BIIB021에 대한 감수성의 차이 및 NSAIDs 및 Niclosamide에 의한 Hsp90 저해제의 활성 변화)

  • Moon, Hyun-Jung;Lee, Su-Hoon;Kim, Sun-Hee;Kang, Chi-Dug
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1212-1219
    • /
    • 2018
  • The critical role of heat shock protein 90 (Hsp90) in tumorigenesis led to the development of several first- and second-generation Hsp90 inhibitors, which have demonstrated promising responses in cancers. In this study, we found second-generation Hsp90 inhibitor BIIB021-resistant multidrug-resistant (MDR) human cancer cells, although BIIB021 was shown to be active in first-generation Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG)-resistant MDR cells. MCF7-MDR and HeyA8- MDR cells were more resistant to BIIB021 than their parental counterparts, indicating that BIIB021 cannot be applicable to all cancer cells expressing MDR proteins. We revealed that dimethyl-celecoxib (DMC), one of the non-steroidal anti-inflammatory drugs (NSAIDs), potentiated cytotoxicity of BIIB021 against both BIIB021-resistant and BIIB021-sensitive MDR cells. The effectiveness of NSAIDs involving celecoxib and DMC in combination with BIIB021 led to the autophagic degradation/down-regulation of mutant p53 (mutp53) that overexpressed MDR cells and the suppression of Hsp70 induction. This resulted in sensitization of MDR cells to BIIB021. Moreover, autophagy induction by sulindac sulfide, another type of NSAID, and niclosamide, an FDA-approved anthelmintic drug, potentiated 17-AAG-mediated autophagic degradation/down-regulation of mutp53 and c-Myc, client proteins of Hsp90. Therefore, our results suggest that NSAIDs and niclosamide positively enhance the anticancer activity of Hsp90 inhibitors through an autophagic pathway. They may also be new candidates for sensitizing MDR cells to Hsp90 inhibitors.

The Activity of Protein Kinases on the Endothelin-1-induced Muscle Contraction and the relationship of Physical Therapy (Endothelin-1-유도 근수축에 관여하는 부활효소의 활성과 물리치료의 상관성)

  • Kim, Mi-Sun;Kim, Il-Hyun;Hwang, Byong-Yong;Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.20 no.3
    • /
    • pp.53-59
    • /
    • 2008
  • Purpose: The non-receptor-type protein tyrosine kinase Syk (636 amino acids, 72 kDa) is ubiquitously expressed in hematopoietic stem cells and has been widely studied as a regulator and effector of B cell receptor signaling that occurs in processes such as differentiation, proliferation and apoptosis. However, the mechanism relating Syk and p38 mitogen-activated protein kinases (p38MAPK) by endothelin-1 (ET-1, 21 amino acids) stimulation in muscle cells, especially in the volume-dependent hypertensive state, remains unclear. Methods: In this study, we investigated the relationship between Syk and p38MAPK for isometric contraction and enzymatic activity by ET-1 from rat aortic smooth muscle cells and aldosterone-analogue deoxycorticosterone acetate (DOCA) hypertensive state rats (ADHR). Results: The systolic blood pressure was significantly increased in ADHR than in a control group of animals. ET-1 induced isometric contraction and phosphorylation of p38MAPK, which was increased in muscle strips from ADHR. Increased vasoconstriction and phosphorylation of p38MAPK induced by treatment with 30 nM ET-1 were inhibited by the use of 10${\mu}M$ SB203580, an inhibitor of p38MAPK from ADHR. Furthermore, ET-1 induced isometric contraction and phosphorylation of Syk and p38MAPK, which were increased in the aortic smooth muscle cells. Increased tension and phosphorylation of Syk and p38MAPK induced by ET-1 were inhibited by SB203580 from rat aortic smooth muscle cells. Conclusion: These results, suggest that the Syk activity affects ET-1-induced contraction through p38MAPK in smooth muscle cells and that the same pathway directly or indirectly is associated with volume dependent hypertension. The findings suggest the need to develop cardiovascular disease-specialized physical therapy.

  • PDF

Extracellular Polysaccharide Produced by a New Methylotrophic Isolate (새로운 메탄올 자화세균이 생산하는 세포외 다당류)

  • Lee, Ho J.;Kim, Si W.;Kim, Young M.
    • Korean Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.212-218
    • /
    • 1998
  • An obligately methylotrophic bacterium which produces extracellular polysaccharide (EPS) was isolated through methanol-enrichment culture technique. The isolate was aerobic, nonmotile, and gram negative rod and exibited catalase, but no oxidase, activity. Plasmid, carotenoid, and poly-${\beta}$-hydroxybutyric acid were not found. The guanine plus cytosine content of DNA was 52-56%. The isolate was found to grow only on methanol and monomethylamine. Growth was optimal ($t_d=2.4h$) at $35^{\circ}C$ and pH 6.5 in a mineral medium containing 0.5% (v/v) methanol, 25 mM phosphate, and 0.212% ammonium sulfate. Methanol was assimilated through the ribulose monophosphate pathway. Maximun amount of EPS was produced in cells growing at the mid-stationary growth phase at $30^{\circ}C$ in a mineral medium (PH 6.5) containing 1.0% (v/v) methanol in the CIN ratio of 54.7. Thin-layer chromatographic and high performance liquid chromatographic analysis revealed that the EPS was composed of glucose and galactose. EPS which was not treated with ethanol (Pbe) exhibited stable viscosity under various concentrations of salts and temperatures hut showed high viscosity at low pH. EPS precipitated with ethanol (Pae) was found to be more stable in viscosity than the Pbe at various salt concentrations, temperatures, and pH. The Pae also exhibited higher viscosity than the Pbe and xanthan gum. Scanning electron microscopy revealed that the lyophilized Pbe and Pae have a multi-layered structure and a structure of thick fibers, respectively.

  • PDF

Fermented Acanthopanax koreanum Root Extract Reduces UVB- and H2O2-Induced Senescence in Human Skin Fibroblast Cells

  • Park, Min-Ja;Bae, Young-Seuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1224-1233
    • /
    • 2016
  • The present study assessed the effects of an aqueous extract of Acanthopanax koreanum root (AE) and of AE following fermentation by lactic acid bacteria (Lactobacillus plantarum and Bifidobacterium bifidum) (AEF) on human skin fibroblast HS68 cells exposed to ultraviolet B (UVB) irradiation and oxidative stress. AEF effectively antagonized the senescence-associated β-galactosidase staining and upregulation of p53 and p21Cip1/WAF1 induced by UVB or H2O2 treatment in HS68 cells. It also exhibited excellent antioxidant activities in radical scavenging assays and reduced the intracellular level of reactive oxygen species induced by UVB or H2O2 treatment. The antioxidant and antisenescent activities of AEF were greater than those of nonfermented A. koreanum extract. AEF significantly repressed the UVB- or H2O2-induced activities of matrix metalloproteinase (MMP)-1 and -3, overexpression of MMP-1, and nuclear factor κB (NF-κB) activation. This repression of NF-κB activation and MMP-1 overexpression was attenuated by a mitogen-activated protein kinase activator, suggesting that this AEF activity was dependent on this signaling pathway. Taken together, these data indicated that AEF-mediated antioxidant and anti-photoaging activities may produce anti-wrinkle effects on human skin.